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1. INTRODUCTION: 

Consider a general heteroscedastic regression model for observable data iy  given by  

 

iii exfy  ),(  ,   ni ,...,1                                                                             (1) 

 

Where f  is an unknown mean response function, ie  are uncorrelated errors with zero mean and variance 
2

i , ix  is a 

p vector of predictors,   is a 1p  regression parameter and n  is the sample size. The heteroscedasticity 

represented by non constant i  may be regarded as of unknown form or may be modeled as a function of the 

independent variable x , known factors exogenous to the model and the regression parameters. The variance function 

may be completely known, specified up to additional unknown parameters or completely unknown. 

 

Under the parametric approach, the assumption is that the variances are not constant according to model (1). The 

problem of heterogeneity may be attacked directly by specifying models for both the mean and the variance and, in 

particular, a variance model with unknown parameters which must be estimated. A general parametric model for the 

variance can be written as 

 

   ,,222

iii zg                                                                                                     (2) 

 

Where   is an unknown scale parameter, g  is the variance function, iz  is a known vector possibly containing ix , 

    ,xf ii   and   is an unknown 1r  vector of parameters. There are a number of graphical techniques which 

can be used in choosing the model to be fitted by letting the data reveal themselves. The unweighted least squares 

residual plot is most widely used (see, for example, Weisberg 1985 and Carroll and Ruppert 1988). 

 

If ii xz  , the variance depends on the predictors. The variance can also depend on the known mean  i  or on the 

estimated mean response   ˆ
i . 

In practice as well as for theoretical investigations, g  is taken to be known and to satisfy appropriate 

smoothness conditions. In a model such as (2), estimation of the variances essentially reduces to the estimation of , 

since   will be estimated routinely and the final estimates of   and   may be used to obtain a final estimate of . 

Thus investigations of the properties of variance estimators for (2) focus on properties of estimators for . In some 

applications, estimation of   is not the only problem of interest. In chemical and biological assay problems, issues of 

prediction and calibration arise. In such problems the estimator of   plays a central role. In radioimmunoassay, the 

statistical properties of prediction intervals and constructs such as the minimum detectable concentration are highly 

dependent on how one estimates   (Raab, 1981). In engineering, quality improvement applications is an important 
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goal to discover the source of variability. This can be obtained directly from the variance function estimate. These and 

many other practical examples indicate the importance of the choice of the method for estimating the variance 

function. In the case of model (2), the choice is defined by how we choose to estimate the variance function, g  and, in 

particular, . 

Many of the methods for estimating   that have been proposed in the literature are (possibly weighted) 

regression methods based on functions of either absolute residuals from the current regression fit or, in the case of 

replications at each design point, sample standard deviations. Still other methods are joint estimation methods based 

on assumption about the underlying distributions in which ),,(   are in principle estimated simultaneously.  

 

2. ESTIMATION PROCEDURES: 

 

2.1. Pseudo likelihood procedure 

Assume the data are normal and then write the likelihood as 
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Equation (3) provides the estimate for the regression parameter   for some estimated value of . To obtain this 

estimated value of   maximize the log likelihood  /ˆ,,    

Where         
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Now write   /,,ˆlog 2/ L  
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Where 
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 . Then ̂  is obtained by solving 
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2.2. Restricted maximum likelihood procedure 
 

Define the hat matrix   TT

nn *

1

*** 


  with diagonal elements 
iih  where *  is the pn  matrix where the 

th
i  

row is the transpose of the column vector 
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. The diagonal elements 
iih  are the leverage values. Then using these leverage values and changing 

the divisor of (4) to pn  where p is the number of regression parameters, solve for   and   equations 
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2.3. Least squares on squared residuals procedure 

From equation (1), write the squared residuals as   2*
ˆ,ii xfy   where 

*̂  is the current estimate of  . Consider a 

regression problem where the responses are the squared residuals and the regression function is its approximate 

expectation    ,ˆ, *

22

iizg  . 

 

Thus write       ,ˆ,~ˆ, *
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* iiii zgxfyE  . Then minimize  
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residuals are themselves heteroscedastic with variance approximately proportional to    ,,44

iizg . Thus one is 

naturally led to generalized least squares, see Jobson and Fuller (1980). Hence, for generalized least squares, this 

suggests minimizing with respect to   and   the weighted least squares version 
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Where *̂  is the current estimate of . Now solve equations (8) and (9) to get ̂ and̂  respectively. Next, to account 

for the effect of leverage minimize 
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with 
iih  as defined under Subsection (2.2). Solving equations (10) and (11) gives ̂  and ̂  respectively. This is done 

iteratively. 

 

2.4. Least squares on absolute residuals procedure 

Write      ,ˆ,ˆ, ** iiii zgxfyE   leading to the minimization of 
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iiii zgxfy   with respect to  and . However, since the residuals are to be appropriately 

weighted, Carroll and Ruppert(1988), suggest estimating   by minimizing with respect to  and  the weighted 

version namely 
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and for ̂  solve 
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Next, modify this procedure to account for the effect of leverage by minimizing with respect to  and  
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. Differentiate with respect to  and  respectively and equate to 

zero obtaining equations 
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2.5. Modified maximum likelihood procedure 
This is the problem of estimating variances by pooling information from a large number of small samples. At 

each predictor value ix , observe im replicated responses 
jiy , Mi ,...,1  and imj ,...,1 . Consider the case of equal 

replications mmi   so that nmM   is the total number of observations. Raab (1981,p. 35) suggested the 
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modification of the standard likelihood replacing the term 2

im


  by 
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  and gives a number of justifications. 

Adopt this modified likelihood and write 
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Now differentiate with respect to 
2  and equate to zero, to obtain 
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Similarly, differentiate   with respect to   and equate to zero obtaining 
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Finally differentiate   with respect to   and equate to zero getting 
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Now solve equations (16), (17) and (18) to obtain  ˆ,ˆ 2
 and ̂  respectively. Note that for the usual maximum 

likelihood estimate  is biased. It is made unbiased in this case by dividing the corrected sum of squares by the 

degrees of freedom rather than the sample size. 

 

2.6. Extended quasi likelihood procedure 
Wedderbuen (1974) gives the definition of quasi likelihood while Nelder and Pregibon (1987) discuss the 

extended quasi likelihood. When   is known and the variance function has the form (2), quasi likelihood estimation 

of   is a form of iterated generalized least squares. The extended quasi likelihood method is a joint estimation 

scheme which attempts to extend the notion of quasi likelihood to include estimation of . The method is based on the 

assumption that the data arise from a class of distributions depending on   and involves estimation of   by 

minimizing with respect to  ,  and 
2  the extended quasi likelihood.  
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Equating the derivatives to zero gives ̂  as the solution of  
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and for 
2̂ solve 
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Similarly, differentiating 


Q with respect to  gives 
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2.7. Logarithm of absolute residuals procedure 

 

This procedure exploits the fact that       ,ˆ,~ˆ, ** iiiii zgxfyE  and uses a two-step estimation process. 

The first step consists of taking the natural logarithms of the absolute residuals   *
ˆ, iii xfy  . These are then 

regressed on     ,ˆ,log *zg  
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thereby yielding estimates of   as the slope and 
2log  as the intercept. With the assumption that the errors are 

independent and identically distributed, this should be approximately a homoscedastic regression. A practical problem 

arises if one of the residuals is very near zero, in which case taking logarithms induces a rather large and artificial 

outlier. To avoid this potential difficulty for fitting the variance model, Carroll and Ruppert (1988) suggest that one 

might wish to delete a few of the smallest absolute residuals. 

 

2.8. Rodbard and Frazier procedure 

This method uses replication as in the case of modified maximum likelihood and it is identical to the 

logarithm method. The idea is to avoid dependence on unweighted methods. Here the absolute residual is replaced by 

the sample standard deviation and  *
ˆ,ixf  in the regression function is replaced by the sample mean iy . Thus the 

procedure is to regress the logarithm of the sample standard deviation on the logarithm of the sample mean.  

                                             

2.9. Maximum likelihood procedure 

The process here is the same as in the pseudo likelihood procedure. However instead of fixing   at the 

current value ̂  and maximizing the likelihood function in , one maximizes the likelihood function jointly in   and 

 . Maximum likelihood assumes that the variances do not depend on the mean. 

                                                                                                                                                                  

2.10. Sadler and Smith procedure 

This is similar to the modified maximum likelihood procedure where one uses the sample mean iy  instead of

i . 

 

3. SIMULATION STUDY: 

Consider a simple linear regression model 

 

ii10i exy   ,  ni ,...,1                                                   (22) 
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Here, v  indicates  ,
2 , 0  and 1  respectively, jd  is the difference between the fitted and the true 

function at the points 1,...,1jx  at intervals of 0.001 and subscript i  denotes the 
th

i  simulation. In the logarithm 

of absolute residuals procedure, the problem of the residuals near zero was avoided by discarding all the simulations 

which portrayed such a problem. 
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4. EMPIRICAL RESULTS: 

The outputs are presented in tables one to six. Table one gives the averages, Table two gives the biases while 

Table three gives the root mean squared errors and Table four gives the root mean integrated squared errors for the 

various procedures under study. Table five gives the rankings of the procedures while table six shows the variations 

between the fitted and the true functions. The abbreviations PLH, RML, SR1, SR2, AR1, AR2, LAR, EQL, MML, 

and ROD correspond respectively to pseudo likelihood, restricted maximum likelihood, squared residuals with 

leverage, squared residuals without leverage, absolute residuals with leverage, absolute residuals without leverage, 

logarithm of absolute residuals, extended quasi likelihood, modified maximum likelihood and Rodbard.  

 

 ̂  
2̂  

0̂  1̂  

PLH 0.83 0.32 0.02 0.95 

RML 0.96 0.23 0.00 0.97 

SR1 0.86 0.28 0.01 1.02 

SR2 0.87 0.32 0.02 1.02 

AR1 0.92 0.20 -0.01 1.01 

AR2 0.98 0.23 0.02 1.02 

LAR 1.14 0.38 0.01 0.99 

EQL 1.16 0.27 -0.02 1.05 

MML 0.93 0.49 0.01 0.97 

ROD 1.15 0.34 0.02 0.96 

Table 1.  Average Estimates 

 

 ̂  
2̂  

0̂  1̂  

PLH -0.17 0.02 0.02 -0.05 

RML -0.04 -0.07 0.00 -0.03 

SR1 -0.14 -0.02 0.01 0.02 

SR2 -0.13 0.02 0.02 0.02 

AR1 -0.08 -0.10 -0.01 0.01 

AR2 -0.02 -0.07 0.02 0.02 

LAR 0.14 0.08 0.01 -0.01 

EQL 0.16 -0.03 -0.02 0.05 

MML -0.07 0.19 0.01 -0.03 

ROD 0.15 0.04 0.02 -0.04 

 

Table 2. Biases 

 

 ̂  
2̂  

0̂  1̂  

PLH 0.522 0.119 0.153 0.325 

RML 0.568 0.191 0.183 0.311 

SR1 0.474 0.111 0.131 0.309 

SR2 0.565 0.137 0.160 0.288 

AR1 0.530 0.120 0.139 0.326 

AR2 0.510 0.122 0.133 0.283 

LAR 0.481 0.118 0.122 0.316 

EQL 0.490 0.104 0.158 0.326 

MML 0.455 0.228 0.111 0.233 

ROD 0.489 0.124 0.136 0.310 

 

Table 3. Root Mean Square Errors 

 

PLH RML SR1 SR2 AR1 AR2 LAR EQL MML ROD 

0.202 0.326 0.217 0.221 0.274 0.247 0.374 0.207 0.303 0.294 

 

Table 4. Root Mean Integrated Square Errors 
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  ̂   

 BIAS RMSE RMISE 

PLH 9 7 1 

RML 2 10 9 

SR1 6 2 3 

SR2 5 9 4 

AR1 4 8 6 

AR2 1 6 5 

LAR 6 3 10 

EQL 8 5 2 

MML 3 1 8 

ROD 7 4 7 

 

Table 5. Ranking 

 

 ̂  
2̂  

0̂  1̂  

PHL 0.244 0.014 0.025 0.103 

RML 0.321 0.032 0.033 0.096 

SR1 0.205 0.012 0.017 0.095 

SR2 0.302 0.018 0.025 0.083 

AR1 0.275 0.005 0.019 0.106 

AR2 0.260 0.010 0.017 0.080 

LAR 0.212 0.008 0.015 0.100 

EQL 0.215 0.010 0.025 0.104 

MML 0.202 0.016 0.012 0.054 

ROD 0.217 0.014 0.018 0.095 

 

Table 6. Variances 

 

5. DISCUSSION AND CONCLUSION: 

With the exception of the logarithm of absolute residuals (LAR), extended quasi likelihood (EQL) and 

Rodbard (ROD) all the other procedures underestimate .  Considering the absolute bias and ranking these procedures 

according to the three criteria, absolute bias, root mean squared error and root mean integrated squared error as in 

table 5 it is seen that absolute residuals with leverage corrected (AR2) does best. However for RMSE modified 

maximum likelihood (MML) seems to do well and for RMISE the best procedure is pseudo likelihood (PLH). 

Although the differences are small, squared residuals (SR1) and absolute residuals (AR2) are good at least for cases 

where replication is not available. Modified maximum likelihood (MML) could be recommended for replicated cases. 

Note that MML appear better because of the double sample size arising from the replication. Another observation is 

that the variances are larger than the biases for all the procedures as displayed in tables 2 and 6. No procedures are 

terrible.  
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