ON THE SETS OF INTEGRAL SOLUTIONS TO THE CUBIC EQUATION WITH FOUR UNKNOWNS $x^{3}+y^{3}+(x+y)(x-y)^{2}=16 z w^{2}$

A. Vijayasankar ${ }^{1}$, G. Dhanalakshmi ${ }^{2}$, Sharadha Kumar ${ }^{3}$, M. A. Gopalan ${ }^{4}$
${ }^{1,2}$ Assistant Professor, ${ }^{3}$ Research Scholar, ${ }^{4}$ Professor
${ }^{1,2,3,4}$ Department of Mathematics,
${ }^{1,3}$ National College, Affiliated to Bharathidasan University, Trichy-620 001, Tamil Nadu, India.
${ }^{2}$ Chidambaram Pillai College for Women, Affiliated to Bharathidasan University, Mannachanallur, Trichy, Tamil Nadu, India.
${ }^{4}$ Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
Email- 'avsankar70@yahoo.com, ${ }^{2}$ dhanamselvi93@gmail.com, ${ }^{3}$ sharadhak12@gmail.com, ${ }^{4}$ mayilgopalan@gmail.com

> Abstract:The homogeneous cubic equation with four unknowns represented by the Diophantine equation $x^{3}+y^{3}+(x+y)(x-y)^{2}=16 z w^{2}$ is analyzed for its patterns of non-zero distinct integral solutions.

Key Words: Homogeneous cubic equation, cubic with four unknowns, integral solutions.

1. INTRODUCTION:

The cubic diophantine equations are rich in variety and offer an unlimited field for research [1-2]. For an extensive review of various problems, one may refer [3-22]. This paper concerns with another interesting cubic diophantine equation with four unknowns $\mathrm{x}^{3}+\mathrm{y}^{3}+(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})^{2}=16 \mathrm{zw}^{2}$ for determining its infinitely many non-zero integral solutions.

2. METHOD OF ANALYSIS:

The homogeneous cubic equation with four unknowns to be solved for its distinct non-zero integral solution is

$$
\begin{equation*}
x^{3}+y^{3}+(x+y)(x-y)^{2}=16 z^{2} \tag{1}
\end{equation*}
$$

Introduction of the linear transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{u}+\mathrm{v}, \mathrm{y}=\mathrm{u}-\mathrm{v}, \mathrm{z}=\mathrm{u} \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+7 v^{2}=8 w^{2} \tag{3}
\end{equation*}
$$

Different methods of obtaining the patterns of integer solutions to (1) are illustrated below:

PATTERN 1:

We can write (3) in the form of ratio as

$$
\frac{u+w}{7(w+v)}=\frac{(w-v)}{u-w}=\frac{\alpha}{\beta}, \beta \neq 0
$$

The above equation is equivalent to the double equations

$$
\begin{aligned}
& \beta u-7 \alpha v+(\beta-7 \alpha) w=0 \quad \text { and } \\
& \alpha u+\beta v-(\alpha+\beta) w=0
\end{aligned}
$$

Applying the method of cross multiplication, we get

$$
\left.\begin{array}{l}
u=7 \alpha^{2}+14 \alpha \beta-\beta^{2} \tag{4}\\
v=-7 \alpha^{2}+2 \alpha \beta+\beta^{2}
\end{array}\right\}
$$

$$
\begin{equation*}
\mathrm{w}(\alpha, \beta)=\beta^{2}+7 \alpha^{2} \tag{5}
\end{equation*}
$$

Using (4) in (2), we have

$$
\left.\begin{array}{l}
x(\alpha, \beta)=16 \alpha \beta \tag{6}\\
y(\alpha, \beta)=14 \alpha^{2}+12 \alpha \beta-2 \beta^{2} \\
z(\alpha, \beta)=7 \alpha^{2}+14 \alpha \beta-\beta^{2}
\end{array}\right\}
$$

Thus, (5) and (6) give a set of integer solutions for (1).

PATTERN 2:

We can write (3) in the form of ratio as

$$
\frac{u+w}{(w+v)}=\frac{7(w-v)}{u-w}=\frac{\alpha}{\beta}, \beta \neq 0
$$

The above equation is equivalent to the double equations

$$
\begin{aligned}
& \beta u-\alpha v+(\beta-\alpha) w=0 \quad \text { and } \\
& \alpha u+7 \beta v-(\alpha+7 \beta) w=0
\end{aligned}
$$

Applying the method of cross multiplication, we get

$$
\left.\begin{array}{l}
\mathrm{u}=\alpha^{2}+14 \alpha \beta-7 \beta^{2} \\
\mathrm{v}=-\alpha^{2}+2 \alpha \beta+7 \beta^{2}
\end{array}\right\}
$$

Using (7) in (2), we have

$$
\left.\begin{array}{l}
x(\alpha, \beta)=16 \alpha \beta \tag{9}\\
y(\alpha, \beta)=2 \alpha^{2}+12 \alpha \beta-14 \beta^{2} \\
z(\alpha, \beta)=\alpha^{2}+14 \alpha \beta-7 \beta^{2}
\end{array}\right\}
$$

Thus, (8) and (9) represents the integer solutions to (1).

PATTERN 3:

Let

$$
\begin{equation*}
w=a^{2}+7 b^{2} \tag{10}
\end{equation*}
$$

where a and b are non-zero integers.
Write 8 as

$$
\begin{equation*}
8=(1+i \sqrt{7})(1-i \sqrt{7}) \tag{11}
\end{equation*}
$$

Using (10), (11) in (3) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=(1+i \sqrt{7})(a+i \sqrt{7} b)^{2} \tag{12}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{u}=\mathrm{a}^{2}-14 \mathrm{ab}-7 \mathrm{~b}^{2} \tag{13}\\
\mathrm{v}=\mathrm{a}^{2}+2 \mathrm{ab}-7 \mathrm{~b}^{2}
\end{array}\right\}
$$

Using (7) and (2), the values of x, y and z are given by

$$
\left.\begin{array}{l}
x=x(a, b)=2 a^{2}-12 a b-14 b^{2} \\
y=y(a, b)=-16 a b \\
z=z(a, b)=a^{2}-14 a b-7 b^{2}
\end{array}\right\}
$$

(14)

Thus (10) and (14) represent the non-zero integer solutions to (1).

PATTERN 4:

Write 8 as

$$
\begin{equation*}
8=\frac{(5+i \sqrt{7})(5-i \sqrt{7})}{4} \tag{15}
\end{equation*}
$$

Using (10), (15) in (3) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=\left(\frac{5+i \sqrt{7}}{2}\right)(a+i \sqrt{7} b)^{2} \tag{16}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
u=\frac{1}{2}\left(5 a^{2}-14 a b-35 b^{2}\right) \\
v=\frac{1}{2}\left(a^{2}+10 a b-7 b^{2}\right) \tag{17}
\end{array}\right\}
$$

Since our interest is on finding integer solutions, replacing a by $2 \mathrm{~A}, \mathrm{~b}$ by 2 B in (10) and (17), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=x(A, B)=12 A^{2}-8 A B-84 B^{2} \\
& y=y(A, B)=8 A^{2}-48 A B-56 B^{2} \\
& z=z(A, B)=10 A^{2}-28 A B-70 B^{2} \\
& w=w(A, B)=4 A^{2}+28 B^{2}
\end{aligned}
$$

(18)

Thus (18) represent the non-zero integer solutions to (1).

PATTERN 5:

Write 8 as

$$
\begin{equation*}
8=\frac{(11+i \sqrt{7})(11-i \sqrt{7})}{16} \tag{19}
\end{equation*}
$$

Using (10), (19) in (3) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=\left(\frac{11+i \sqrt{7}}{4}\right)(a+i \sqrt{7} b)^{2} \tag{20}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{u}=\frac{1}{4}\left(11 \mathrm{a}^{2}-14 \mathrm{ab}-77 \mathrm{~b}^{2}\right) \tag{21}\\
\mathrm{v}=\frac{1}{4}\left(\mathrm{a}^{2}+22 \mathrm{ab}-7 \mathrm{~b}^{2}\right)
\end{array}\right\}
$$

Since our interest is on finding integer solutions, replacing a by $2 \mathrm{~A}, \mathrm{~b}$ by 2 B in (10) and (21), the corresponding integer solutions to (1) are given by

$$
\left.\begin{array}{l}
x=x(A, B)=12 A^{2}+8 A B-84 B^{2} \\
y=y(A, B)=10 A^{2}-36 A B-70 B^{2} \\
z=z(A, B)=11 A^{2}-14 A B-77 B^{2} \tag{22}\\
w=w(A, B)=4 A^{2}+28 B^{2}
\end{array}\right\}
$$

Thus (22) represent the non-zero integer solutions to (1).

PATTERN 6:

Write (3) as

$$
\begin{equation*}
u^{2}+7 v^{2}=8 w^{2} * 1 \tag{23}
\end{equation*}
$$

write 1 as

$$
\begin{equation*}
1=\left(\frac{(3+i \sqrt{7})(3-i \sqrt{7})}{16}\right) \tag{24}
\end{equation*}
$$

Using (10), (11), (24) in (23) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=(1+i \sqrt{7})(a+i \sqrt{7} b)^{2}\left(\frac{3+i \sqrt{7}}{4}\right) \tag{25}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{u}=\left(-\mathrm{a}^{2}-14 \mathrm{ab}+7 \mathrm{~b}^{2}\right) \tag{26}\\
\mathrm{v}=\left(\mathrm{a}^{2}-2 \mathrm{ab}-7 \mathrm{~b}^{2}\right)
\end{array}\right\}
$$

Using (26) and (2), the values of x, y and z are given by

$$
\left.\begin{array}{l}
x=x(a, b)=-16 a b \tag{27}\\
y=y(a, b)=-2 a^{2}-12 a b+14 b^{2} \\
z=z(a, b)=-a^{2}-14 a b+7 b^{2}
\end{array}\right\}
$$

Thus (10) and (27) represent the non-zero integer solutions to (1).

PATTERN 7:

Assume 1 as

$$
\begin{equation*}
1=\left(\frac{(1+i 3 \sqrt{7})(1-i 3 \sqrt{7})}{64}\right) \tag{28}
\end{equation*}
$$

Using (10), (11),(28) in (23) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=(1+i \sqrt{7})(a+i \sqrt{7} b)^{2}\left(\frac{1+i 3 \sqrt{7}}{8}\right) \tag{29}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{u}=\frac{1}{2}\left(-5 \mathrm{a}^{2}-14 \mathrm{ab}+35 \mathrm{~b}^{2}\right) \\
\mathrm{v}=\frac{1}{2}\left(\mathrm{a}^{2}-10 \mathrm{ab}-7 \mathrm{~b}^{2}\right) \tag{30}
\end{array}\right\}
$$

Since our interest is on finding integer solutions, replacing a by $2 \mathrm{~A}, \mathrm{~b}$ by 2 B in (10) and (30), the corresponding integer solutions to (1) are given by

$$
\left.\begin{array}{l}
x=x(A, B)=\left(-8 A^{2}-48 A B+56 B^{2}\right) \\
y=y(A, B)=\left(-12 A^{2}-8 A B+84 B^{2}\right) \\
z=z(A, B)=\left(-10 A^{2}-28 A B+70 B^{2}\right) \tag{31}\\
w=w(A, B)=\left(4 A^{2}+28 B^{2}\right)
\end{array}\right\}
$$

Thus (31) represent the non-zero integer solutions to (1).

PATTERN 8:

Assume 1 as

$$
\begin{equation*}
1=\left(\frac{(3+i 4 \sqrt{7})(3-i 4 \sqrt{7})}{121}\right) \tag{32}
\end{equation*}
$$

Using (10), (11),(32) in (23) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=(1+i \sqrt{7})(a+i \sqrt{7} b)^{2}\left(\frac{3+i 4 \sqrt{7}}{11}\right) \tag{33}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{u}=\frac{1}{11}\left(-25 \mathrm{a}^{2}-98 \mathrm{ab}+175 \mathrm{~b}^{2}\right) \\
\mathrm{v}=\frac{1}{11}\left(7 \mathrm{a}^{2}-50 \mathrm{ab}-49 \mathrm{~b}^{2}\right) \tag{34}
\end{array}\right\}
$$

Since our interest is on finding integer solutions, replacing a by $11 \mathrm{~A}, \mathrm{~b}$ by 11 B in (10) and (34), the corresponding integer solutions to (1) are given by

$$
\left.\begin{array}{l}
x=x(A, B)=\left(-198 A^{2}-1628 A B+1386 B^{2}\right) \\
y=y(A, B)=\left(-352 A^{2}-528 A B+2464 B^{2}\right) \\
z=z(A, B)=\left(-275 A^{2}-1078 A B+1925 B^{2}\right) \tag{35}\\
w=w(A, B)=\left(121 A^{2}+847 B^{2}\right)
\end{array}\right\}
$$

Thus (35) represent the non-zero integer solutions to (1).

PATTERN 9:

Assume 1 as

$$
\begin{equation*}
1=\left(\frac{(1+i 48 \sqrt{7})(1-i 48 \sqrt{7})}{127^{2}}\right) \tag{36}
\end{equation*}
$$

Using (10), (11),(36) in (23) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=(1+i \sqrt{7})(a+i \sqrt{7} b)^{2}\left(\frac{1+i 48 \sqrt{7}}{127}\right) \tag{37}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{u}=\frac{1}{127}\left(-335 \mathrm{a}^{2}-686 \mathrm{ab}+2345 \mathrm{~b}^{2}\right) \\
\mathrm{v}=\frac{1}{127}\left(49 \mathrm{a}^{2}-670 \mathrm{ab}-343 \mathrm{~b}^{2}\right) \tag{38}
\end{array}\right\}
$$

Since our interest is on finding integer solutions, replacing a by 127 A , b by 127 B in (10) and (38), the corresponding integer solutions to (1) are given by

$$
\left.\begin{array}{l}
x=x(A, B)=\left(-36322 A^{2}-172212 A B+254254 B^{2}\right) \\
y=y(A, B)=\left(-48768 A^{2}-2032 A B+341376 B^{2}\right) \\
z=z(A, B)=\left(-42545 A^{2}-87122 A B+297815 B^{2}\right) \tag{39}\\
w=w(A, B)=\left(16129 A^{2}+112903 B^{2}\right)
\end{array}\right\}
$$

Thus (39) represent the non-zero integer solutions to (1).

PATTERN 10:

Assume 1 as

$$
\begin{equation*}
1=\left(\frac{(3+i 4 \sqrt{7})(3-i 4 \sqrt{7})}{121}\right) \tag{40}
\end{equation*}
$$

Using (10), (9),(34) in (17) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=\left(\frac{5+i \sqrt{7}}{2}\right)(a+i \sqrt{7} b)^{2}\left(\frac{3+i 4 \sqrt{7}}{11}\right) \tag{41}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
u=\frac{1}{22}\left(-13 a^{2}-322 a b+91 b^{2}\right) \\
v=\frac{1}{22}\left(23 a^{2}-26 a b-161 b^{2}\right) \tag{42}
\end{array}\right\}
$$

Since our interest is on finding integer solutions, replacing a by $22 \mathrm{~A}, \mathrm{~b}$ by 22 B in (10) and (42), the corresponding integer solutions to (1) are given by

$$
\left.\begin{array}{l}
\mathrm{x}=\mathrm{x}(\mathrm{~A}, \mathrm{~B})=\left(220 \mathrm{~A}^{2}-7656 \mathrm{AB}-1540 \mathrm{~B}^{2}\right) \\
\mathrm{y}=\mathrm{y}(\mathrm{~A}, \mathrm{~B})=\left(-792 \mathrm{~A}^{2}-6512 \mathrm{AB}+5544 \mathrm{~B}^{2}\right) \\
\mathrm{z}=\mathrm{z}(\mathrm{~A}, \mathrm{~B})=\left(-286 \mathrm{~A}^{2}-7084 \mathrm{AB}+2002 \mathrm{~B}^{2}\right) \\
\mathrm{w}=\mathrm{w}(\mathrm{~A}, \mathrm{~B})=\left(484 \mathrm{~A}^{2}+3388 \mathrm{~B}^{2}\right)
\end{array}\right\}
$$

(43)

Thus (43) represent the non-zero integer solutions to (1).

PATTERN 11:

Assume 1 as

$$
\begin{equation*}
1=\left(\frac{(1+\mathrm{i} 48 \sqrt{7})(1-\mathrm{i} 48 \sqrt{7})}{127^{2}}\right) \tag{44}
\end{equation*}
$$

Using (10), (15),(44) in (23) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=\left(\frac{5+i \sqrt{7}}{2}\right)(a+i \sqrt{7} b)^{2}\left(\frac{1+i 48 \sqrt{7}}{127}\right) \tag{45}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{u}=\frac{1}{254}\left(-331 \mathrm{a}^{2}-3374 \mathrm{ab}+2317 \mathrm{~b}^{2}\right) \\
\mathrm{v}=\frac{1}{254}\left(241 \mathrm{a}^{2}-662 \mathrm{ab}-1687 \mathrm{~b}^{2}\right)
\end{array}\right\}
$$

(46)

Since our interest is on finding integer solutions, replacing a by 254 A , b by 254 B in (10) and (46), the corresponding integer solutions to (1) are given by

$$
\left.\begin{array}{l}
x=x(A, B)=\left(-22860 A^{2}-1025144 A B+160020 B^{2}\right) \\
y=y(A, B)=\left(-145288 A^{2}-688848 A B+1017016 B^{2}\right) \\
z=z(A, B)=\left(-84074 A^{2}-856996 A B+588518 B^{2}\right) \tag{47}\\
w=w(A, B)=\left(64516 A^{2}+451612 B^{2}\right)
\end{array}\right\}
$$

Thus (47) represent the non-zero integer solutions to (1).

PATTERN 12:

Assume 1 as

$$
\begin{equation*}
1=\left(\frac{(3+i \sqrt{7})(3-i \sqrt{7})}{16}\right) \tag{48}
\end{equation*}
$$

Using (10), (19),(48) in (23) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=\left(\frac{11+i \sqrt{7}}{4}\right)(a+i \sqrt{7} b)^{2}\left(\frac{3+i \sqrt{7}}{4}\right) \tag{49}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{u}=\frac{1}{8}\left(13 \mathrm{a}^{2}-98 \mathrm{ab}-91 \mathrm{~b}^{2}\right) \\
\mathrm{v}=\frac{1}{8}\left(7 \mathrm{a}^{2}+26 \mathrm{ab}-49 \mathrm{~b}^{2}\right) \tag{50}
\end{array}\right\}
$$

Since our interest is on finding integer solutions, replacing a by $8 \mathrm{~A}, \mathrm{~b}$ by 8 B in (10) and (50), the corresponding integer solutions to (1) are given by

$$
\left.\begin{array}{l}
x=x(A, B)=\left(160 A^{2}-576 A B-1120 B^{2}\right) \\
y=y(A, B)=\left(48 A^{2}-992 A B-336 B^{2}\right) \\
z=z(A, B)=\left(104 A^{2}-784 A B-728 B^{2}\right) \tag{51}\\
w=w(A, B)=\left(64 A^{2}+448 B^{2}\right)
\end{array}\right\}
$$

Thus (51) represent the non-zero integer solutions to (1).

PATTERN 13:

Assume 1 as

$$
\begin{equation*}
1=\left(\frac{(1+i 3 \sqrt{7})(1-i 3 \sqrt{7})}{64}\right) \tag{52}
\end{equation*}
$$

Using (10), (19),(52) in (23) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=\left(\frac{11+i \sqrt{7}}{4}\right)(a+i \sqrt{7} b)^{2}\left(\frac{1+i 3 \sqrt{7}}{8}\right) \tag{53}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{u}=\frac{1}{16}\left(-5 \mathrm{a}^{2}-238 \mathrm{ab}+35 \mathrm{~b}^{2}\right) \\
\mathrm{v}=\frac{1}{16}\left(17 \mathrm{a}^{2}-10 \mathrm{ab}-119 \mathrm{~b}^{2}\right)
\end{array}\right\}
$$

(54)

Since our interest is on finding integer solutions, replacing a by $16 \mathrm{~A}, \mathrm{~b}$ by 16 B in (10) and (54), the corresponding integer solutions to (1) are given by

$$
\left.\begin{array}{l}
x=x(A, B)=\left(192 A^{2}-3968 A B-1344 B^{2}\right) \\
y=y(A, B)=\left(-352 A^{2}-3648 A B+2464 B^{2}\right) \\
z=z(A, B)=\left(-80 A^{2}-3808 A B+560 B^{2}\right) \tag{55}\\
w=w(A, B)=\left(256 A^{2}+1792 B^{2}\right)
\end{array}\right\}
$$

Thus (55) represent the non-zero integer solutions to (1).

PATTERN 14:

Assume 1 as

$$
\begin{equation*}
1=\left(\frac{(3+i 4 \sqrt{7})(3-i 4 \sqrt{7})}{121}\right) \tag{56}
\end{equation*}
$$

Using (10), (19),(56) in (23) and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=\left(\frac{11+i \sqrt{7}}{4}\right)(a+i \sqrt{7} b)^{2}\left(\frac{3+i 4 \sqrt{7}}{11}\right) \tag{57}
\end{equation*}
$$

from which we have

$$
\left.\begin{array}{l}
u=\frac{1}{44}\left(5 a^{2}-658 a b-35 b^{2}\right) \\
v=\frac{1}{44}\left(47 a^{2}+10 a b-329 b^{2}\right) \tag{58}
\end{array}\right\}
$$

Since our interest is on finding integer solutions, replacing a by $44 \mathrm{~A}, \mathrm{~b}$ by 44 B in (10) and (58), the corresponding integer solutions to (1) are given by

$$
\left.\begin{array}{l}
x=x(A, B)=\left(2288 A^{2}-28512 A B-16016 B^{2}\right) \\
y=y(A, B)=\left(-1848 A^{2}-29392 A B+12936 B^{2}\right) \\
z=z(A, B)=\left(220 A^{2}-28952 A B-1540 B^{2}\right) \tag{59}\\
w=w(A, B)=\left(1936 A^{2}+13552 B^{2}\right)
\end{array}\right\}
$$

Thus (59) represent the non-zero integer solutions to (1).

3. CONCLUSION:

In this paper, we have made an attempt to determine different patterns of non-zero distinct integer solutions to the homogeneous cubic equation with four unknowns given by $x^{3}+y^{3}+(x+y)(x-y)^{2}=16 z w^{2}$. As the cubic equations are rich in variety, one may search for other forms of cubic equations with multi-variables to obtain their corresponding solutions.

REFERENCES

1. L.E. Dickson(1952), History of Theory of Numbers, Vol.2, Chelsea Publishing company, New York.
2. L.J. Mordell (1969), Diophantine equations, Academic press, New York.
3. M.A. Gopalan, G. Sangeetha (2011), "On the ternary cubic Diophantine equation $y^{2}=\mathrm{Dx}^{2}+\mathrm{z}^{3}$ ", Archimedes J.Math , 1(1), 7-14.
4. M.A. Gopalan, B. Sivakami (2012), "Integral solutions of the ternary cubic equation $4 x^{2}-4 x y+6 y^{2}=\left((k+1)^{2}+5\right) w^{3} "$, Impact J.Sci.Tech, Vol.6, No.1, 15-22.
5. M.A. Gopalan, B. Sivakami (2012), "On the ternary cubic Diophantine equation $2 x z=y^{2}(x+z)$ ", Bessel J.Math ,2(3), 171-177.
6. S. Vidyalakshmi, T.R. Usharani(2013), M.A. Gopalan, "Integral solutions of non-homogeneous ternary cubic equation $a x^{2}+b^{2}=(a+b) z^{3} "$, Diophantus J.Math 2(1), 31-38.
7. M.A. Gopalan, K. Geetha (2013), "On the ternary cubic Diophantine equation $x^{2}+y^{2}-x y=z^{3}$ ", Bessel J.Math., 3(2),119-123.
8. M.A. Gopalan, S. Vidhyalakshmi, A.Kavitha (2013), "Observations on the ternary cubic equation $x^{2}+y^{2}+x y=12 z^{3} "$, Antartica J.Math ,10(5), 453-460.
9. M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi (2013), "Lattice points on the non-homogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+(\mathrm{x}+\mathrm{y}+\mathrm{z})=0$ ", Impact J.Sci.Tech, Vol.7, No.1, 21-25.
10. M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi (2013),"Lattice points on the non-homogeneous cubic equation $x^{3}+y^{3}+z^{3}-(x+y+z)=0 "$, Impact J.Sci.Tech, Vol.7, No1, 51-55.
11. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika (2013), "On the ternary non-homogenous cubic equation $x^{3}+y^{3}-3(x+y)=2\left(3 k^{2}-2\right) z^{3} "$, Impact J.Sci.Tech, Vol.7, No.1, 41-45.
12. S. Vidhyalakshmi, M.A. Gopalan, S. Aarthy Thangam (2014), "On the ternary cubic Diophantine equation $4\left(x^{2}+x\right)+5\left(y^{2}+2 y\right)=-6+14 z^{3}$ " International Journal of Innovative Research and Review (JIRR), Vol 2(3), pp 34-39.
13. M.A. Gopalan, N. Thiruniraiselvi and V. Kiruthika(Sep-2015), "On the ternary cubic diophantine equation $7 x^{2}-4 y^{2}=3 z^{3} "$, IJRSR, Vol.6, Issue-9, 6197-6199.
14. M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari (2015), "On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$ ", International Journal of Applied Research, 1(8), 209-212.
15. R. Anbuselvi, K. Kannaki (Sep 2016), "On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3} "$, IJSR, Vol.5, Issue-9, 369-375.
16. G. Janaki, C. Saranya (March 2017), "Integral solutions of the ternary cubic equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$ ", IRJET, Vol.04, Issue 3, 665-669.
17. S. Vidhyalakshmi, T.R. Usha Rani, M.A. Gopalan, V. Kiruthika (March 2015), "On the cubic equation with four unknowns $x^{3}+y^{3}=14 z w^{2} "$, IJSRP, Volume 5, Issue 3, 1-11.
18. M.A. Gopalan, S. Vidhyalakshmi, G. Sumathi (2012), "On the homogeneous cubic equation with four unknowns $X^{3}+Y^{3}=14 Z^{3}-3 W^{2}(X+Y)$ ", Discovery, 2(4), 17-19.
19. S. Vidhyalakshmi, M.A. Gopalan, A. Kavitha (May-June 2013), "Observation on homogeneous cubic equation with four unknowns $X^{3}+Y^{3}=7^{2 n} Z W^{2} "$, IJMER, Vol.3, Issue 3, 1487-1492.
20. M.A. Gopalan, S. Vidhyalakshmi, E. Premalatha, C. Nithya, "On the cubic equation with four unknowns $\mathrm{x}^{3}+\mathrm{y}^{3}=31\left(\mathrm{k}^{2}+3 \mathrm{~s}^{2}\right) \mathrm{zw}^{2} "$, IJSIMR, Vol.2, Issue 11, Nov-2014, 923-926.
21. M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi (April 2015), "On the cubic equation with four unknowns $x^{3}+4 z^{3}=y^{3}+4 w^{3}+6(x-y)^{3} "$, International Journal of Mathematics Trends and Technology, Vol 20, No.1, 75-84.
22. R. Anbuselvi, K.S. Araththi (Nov-2017), "On the cubic equation with four unknowns $x^{3}+y^{3}=24 \mathrm{zw}^{2}$ ", IJERA, Vol.7, Issue 11 (Part-I), 01-06.
