
INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 6, Issue - 7, July – 2020

Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 6.719
Received Date: 07/07/2020 Acceptance Date: 25/07/2020 Publication Date: 31/07/2020

Available online on – WWW.IJIRMF.COM Page 232

A Survey Paper on Performance Analysis of Data Structure Types

1Himani Bhatt, 2Hetal Chokshi
1, 2Lecturer , Computer Engineering Department,

1, 2 Parul Institute of Engineering and Technology – Diploma Studies, Vadodara, India.

Email – himanibhatt297@gmail.com, 2 hetalshah108@gmail.com

1. INTRODUCTION:
 Data structures are utilized in the circumstances where consistent relationship is required between the data

components so as to store the data. The logical or mathematical model of a specific association of data is called as data

structure [1]. Data structures are intended to sort out information to suit a particular reason so it very well may be gotten

to and worked with in proper manners. In computer programming, an data structure might be chosen or intended to store

data to take a shot at it with different algorithms [2]. Data structures give a way to oversee enormous measures of data

effectively. Some proper plan techniques and programming dialects underline data structures, instead of algorithms.

While Selecting a Data Structure first we have to investigate the issue to decide the asset limitations an answer must

meet, and afterward decide the fundamental activities that must be upheld. We have to ascertain the asset constrains for

every operations and finally select the data structure that best meets these necessities. In general we can change the data

structures dynamically to prepare the data for a given algorithm. The execution of a data structure for the most part

requires composing a lot of systems that make and control examples of that structure. This paper gives clear description

about the Data Structures, time complexity analysis and their applications. Section II presents related work that is carried

out for analyzing the time complexity of data structures and also the classification based on their time complexity.

Section III presents the experimental results and discusses its performance over each scenario (different values of N).

Section IV presents real time applications and finally section V presents the conclusions of the paper.

2. DISCUSSION:
 Premeditation and analysis of each and every data structure are done and based on their run time for each

operation with different range of input data (N). Data structures are classified in to seven different class that group them

according to their time complexity. These data structures works efficiently according to the user’s problem definition

with unique performance. The following Table:1 shows the time complexity of each data structure which is further used

for classification.

Table 1 : Time Complexity of every Data Structure for Insertion, Deletion and Search Operation

 Name of Data

Structure

Time Complexity

Insertion Deletion Search

Class 1 Stack O(1) O(1) O(1)

Queue

Class 2 List O(1) O(N) O(N)

Linked List

Class 3 Heap O(Log N) O(Log N) O(N)

Binary Heap

Class 4 B-Tree

O(Log N)

O(Log N)

O(Log N)
2-3-4 Tree

B+ Tree

Red Black Tree

Splay Tree

Abstract: The Need for Data Structures is to sort out information all the more practically for complex applications.

Numerous information structures exist yet we have to choose the seized information structure to meet the

arrangement. A review has been done on various kinds of information structures to recognize their characteristics

and divisions. This paper depicts unmistakable information structures in a steady way to give a brief examination

on execution of information structures. This paper presents a concise report on execution, time unpredictability

and uses of information structures. This paper arranges information structures into seven classes that bunch them

as per their time multifaceted nature.

Keywords: Data Structure, Time Complexity, Performance.

Key Words: Xyzdf

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 6, Issue - 7, July – 2020

Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 6.719
Received Date: 07/07/2020 Acceptance Date: 25/07/2020 Publication Date: 31/07/2020

Available online on – WWW.IJIRMF.COM Page 233

Class 5 Priority Queue O(1) O(Log N) O(1)

Fibonacci Heap

Class 6 Dequeue O(1) O(1) O(N)

Class 7 Binary Tree O(N) O(N) O(Log N)

Table 2 : Run Time for different input data size(N)

Notation Complexity Description Run time(sec) for different input data size N

N = 10000 N = 1000000 N = 10000000

O(1) Constant Constant number of

operations, not depending on

the input data size

Constant time

Constant time

Constant time

Ο(log N)

Logarithmic

Number of operations

proportional to log2(N)

10-5 secs

(0.00001 secs)

1.7*10-5 secs

(0.000017

secs)

2*10 -5 secs

(0.00002 secs)

O(N) Linear Number of operations

proportional to the input data.

10-3 secs

(0.001 secs)

0.1 secs 1 sec

4. ANALYSIS: Table 3 show the analysis, an input explain how the execution time will change for different data sizes

for performing each operation. The table explains how the execution will change when the size of the input data raises

and it also tells which data structure is best suited for performing specific operation.

 Stack and queue take constant time for performing all the operations irrespective of size of input data.

 As the input data size increases the execution time rapidly increases for searching an element in a linked list.

 The execution time for inserting and deleting an element from the binary heap is very less, but as the input data

size raises execution time for searching an element rapidly increases. If the algorithm involves appending a lot

of data then heaps can be used and is best suited if a large number of insertions and deletions are needed.

 Irrespective of the size of the input data the execution time for the data structures which belongs to category 4

for performing insertion, deletion and search operations is very less. To keep data sorted; despite arbitrary inserts

and deletes then a red black tree can be preferred. The run time for performing insertion and search operations

is constant for priority queue and Fibonacci heap, but for deleting an element run time is very less. Priority

queue can be used to order a list by some kind of importance.

 The run time for dequeue is constant for insertion and deletion operations, but as the size of the input data

increases run time increases rapidly.

 In contrast to other data structures, for a binary tree the run time for inserting and deleting an element rapidly

increases as the input data size increases. But once after inserting all the elements run time for searching an

element is very less irrespective of size of input data. A binary tree is a good data structure to use for searching

sorted data.

Table 3 : Execution time Analysis for different input data size(N)

 Type of Data

Structure

Execution Time analysis for input data size(N)

Insertion Deletion Search

Small Data

Size

As data

size

increases

Small Data

Size

As data

size

increases

Small Data

Size

As data

size

increases

Class 1 Stack constant

time

constant

time

constant

time

constant

time

constant

time

constant

time Queue

Class 2 List constant

time

constant

time

less Increases

rapidly

Less Increases

rapidly Linked List

Class 3 Heap Very Less Very Less Very Less Very Less Less Increases

rapidly Binary Heap

Class 4 B-Tree

Very Less

Very Less

Very Less

Very Less

Very Less

Very Less
2-3-4 Tree

B+ Tree

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 6, Issue - 7, July – 2020

Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 6.719
Received Date: 07/07/2020 Acceptance Date: 25/07/2020 Publication Date: 31/07/2020

Available online on – WWW.IJIRMF.COM Page 234

Red Black

Tree

Splay Tree

Class 5 Priority

Queue

constant

time

constant

time

Very Less

Very Less

constant

time

constant

time Fibonacci

Heap

Class 6 Dequeue constant

time

constant

time

constant

time

constant

time

Less Increse

rapidly

Class 7 Binary Tree Less Increse

rapidly

Less Increse

rapidly

Very less Very less

5. APPLICATION:

 Stacks can be used for converting a decimal number into a binary number, Towers of Hanoi Problem, parsing,

and in runtime memory management.

 Queue can be used for Simulation, Ordered requests and Searches.

 Priority Queue can be used for Bandwidth management, Discrete event simulation, Dijkstra's algorithm,

Huffman coding, A* and SMA* search algorithms and ROAM triangulation algorithm.

 Dequeue is used for the A-Steal job scheduling algorithm.

 Linked Lists are used to implement several other common abstract data types, including stacks, queues,

associative arrays, and symbolic expressions.

 List can be used to store a list of records. The items in a list can be sorted for the purpose of fast search (binary

search).

 Heap data structure is used in Heap sort, Selection algorithms, and Graph algorithms.

 B-Trees have wide range of application in Data base, Dictionaries, 1-D range search.

 Binomial Heaps are used in discrete event simulation and Priority queues.

 Red-Black Trees are used in time-sensitive applications such as applications and in functional programming

and to construct associative sets.

 2-3-4 Trees are used as in-memory data structures so user could memory program steps rather than disc accesses

when evaluating and optimizing an implementation.

 Binary Tree are Used in many search applications where data is constantly entering/leaving, such as the map

and set objects in many languages' libraries.

6. SUMMARY:

This survey paper analyses the run time of information structures for acting totally different operations by

considering totally different vary of computer file size. The information structures represented during this paper square

measure distinguished and economical. The degree of speed-up in apply can depend on the machines on that they're

enforced. During this survey, found some points which will be any explored within the future, like to style algorithms

and information structures so as to attenuate the run time even for larger computer file sizes and take a look at to explore

deeper during this analysis space.

REFERENCES:

Journal Papers:

1. Sleator, Daniel D.; Tarjan, Robert E. (1985), "Self-Adjusting Binary Search Trees", Journal of the ACM.

Books:

1. Dr. N. Kashivishwanath Data Structure Using C++ Laxmi publications

2. Sartaj Sahni, Data structures, Algorithms and Applications in C++.

3. Gopal, Arpita. Magnifying Data Structures PHI.

4. Donald Knuth. The Art of Computer Programming Volume1: Fundamental Algorithms, Third Edition.

Addison-Wesley, 1997

5. Definition of a linked list. National Institute of Standards and Technology. 2004-08-16. Retrieved 2004-12-14.

6. Parlante, Nick (2001). Linked list basics.Stanford University. Retrieved 2009-09-21.

7. Goodrich, Michael T.; Tamassia, Roberto (2004). 7.3.6. Data Structures and Algorithms in Java (3rd ed.). pp.

338–341

8. Atkinson, M.D., J.-R. Sack, N. Santoro, and T. Strothotte. Programming techniques and Data structures.

9. Comer, Douglas (June 1979), The Ubiquitous B-Tree Computing Surveys 11 (2): 12137.

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 6, Issue - 7, July – 2020

Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 6.719
Received Date: 07/07/2020 Acceptance Date: 25/07/2020 Publication Date: 31/07/2020

Available online on – WWW.IJIRMF.COM Page 235

10. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms

MIT Press and McGraw-Hill

11. Grama, Ananth (2004). (2,4) Trees. CS251: Data Structures Lecture Notes. Department of Computer Science,

Purdue University.

12. Ramakrishnan, R. and Gehrke, J. Database Management Systems McGraw-Hill Higher Education (2002), 3rd

edition.

13. San Diego State University: CS 660: Red–Black tree notes, by Roger Whitne

Web References:

 http://searchsqlserver.techtarget.com/definition/data-structure.

 http://www.cprogramming.com/tutorial/computersciencetheory/stack.html

