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1. INTRODUCTION: 

  A straightforward graph is G. An L(2; 1)-labeling of G is a mapping of L from V (G) into numbers such that׀ 

L(v2) -L(v1)2 >׀ if v1 and v2 are neighbouring in G and׀ L(v2)- L(v1) < 1 if v1 and v2 are spaced two distances apart in 

G. Labels are the constituent parts of the image of L, and the span of L is the difference between the biggest and smallest 

labels. The ß-number of G is the minimal span over all L(2; 1)-labelings of G and is represented by the symbol 

ß(G).Additionally, if L is a labelling with a short spread, it is referred to as a ß-labeling of G. Without sacrificing 

generality, we will presume that the minimum label of G's L(2; 1)-labelings is 0.The issue of labelling a graph with a 

condition at distance two was initially researched by Griggs[9] and Yeh [11] as a variant of Hale's channel assignment 

problem [10]. In addition to obtaining bounds on the ß-numbers of graphs in classes like trees and n-cubes, they also 

took into account the connection between ß(G) and invariants (G), (G), and (G). They proved that ß(G)6 (G)+2 (G) and 

hypothesised that ß(G)6 (G) for ß(G)< 2. Chang and Kuo increased the Griggs and Yeh limit to 2(G) + in [3]. (G). 

Georges and others[5] linked the path-covering number of Gc to ß(G), proving that ß(G)6 ׀V (G)1-׀ if and only if Gc has 

a Hamilton route. (Chang and Kuo [3] independently obtained this result as well.) Here, we describe a matched sum of 

graphs and determine bounds for its ß-number.[2]The generalised Petersen graphs, a particular class of matched sums, 

are the subject of our application of these findings, and we demonstrate that these 3-regular graphs have ß-numbers that 

are at most 9, supporting the [9]Griggs and Yeh hypothesis. 

 

2. RESULTS : 

Definition 2.1.1: Assume that V (G1) and V (G2) are graphs, and that M is a matching between them (G2). The graph 

with V (G1 M+G2)=V (G1)U V (G2) and E(G1 M+G2)=E(G1)U E(G2) U M is then the M-matched sum (or simply the 

M-sum) of G1 and G2, written as G1 M +G2.We observe that if M =ϕ, then G1  M + G2 = G1 + G2 and that G1 M + G 2 is 

a subgraph of G1 U G2(the union of G1 and G2). 

 

Theorem 2.2.1: Assume that G1 and G2 are networks. For all M matches, the formula becomes 

 ß(G1  M +G2)6ß(G1) + ß(G2) + 2. 

  Proof: A labelling of G1 M + G2 with the span ß(G1)+ ß(G2) + 2 is sufficient to generate a L(2; 1)-labeling. Assume 

that G1 is labelled as L1, and G2 is labelled as L2. The following is how we define a marking L of G1 M +G2 : v ∈ V (G), 

then L (v);In the event that v ∈ V (G2), L(v) = L2(v) + ß(G1) + 2:When i= 1; 2, the limit of L to V (Gi) is a L(2; 1)-

labeling, and when i = 2; 3, the label of any vertex in V (G1) di2ers from the label of any vertex in V (G2) by at least 

2.We can strengthen the upper limit adding a condition on the ß-numbers of G1 and G2 in relation to (G1) and (G2). This 

mild condition results from the following finding mentioned in [9]: ß(G) + 2 if G has a vertex of degree adjacent to two 

other vertices of degree. According to this conclusion, all k-regular graphs for k = 2 have ß-numbers that are at least k 

+ 2. 

Abstract:    An L(2; 1) graph marking G is an integer labelling of the vertices in V (G) such that labels di2er by at 

least two for neighbouring vertices and labels di2er by at least one for vertices spaced apart by two. The minimal 

span over all L(2; 1)-labelings of G is what is known as the ß-number of G. In this study, we look at extended 

Petersen graphs' ß-numbers. We demonstrate that the ß-number of every generalised Petersen graph is limited 

from above by 9 by introducing the idea of a matched sum of graphs. Then, we demonstrate that, with the exception 

of the Petersen graph itself, this limit can be improved to 8 for all generalised Petersen graphs with vertex order 

12. 
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Theorem 2.2.2: Assume that G1 and G2 are graphs with the property that ß(Gi)<(Gi)+2 for some i. Then, for all M 

matches, ß(G1  M + G2)6ß(G1) + ß(G2) + 1. 

Proof: We presume that ß(G1)<(G1) + 2 without losing generality. Producing a L(2; 1)-labeling of G1 M + G2 with range 

ß(G1) + ß(G2) + 1 is sufficient. Let Li be a ß-labeling of Gi for i = 1 and i = 2. We take into account the labelling L, 

which need not be a L(2; 1)-labeling, as defined as follows:L (v) if v >V (G); if v >V (G2), L(v)= L2(v) + ß(G1) + 1We 

are done if L is a L(2; 1)-labeling.In the absence of such a non-empty subgroup, M, L fails to be a L(2; 1)-labeling 

because M′ = {g1; g2}, L(g1) = ß(G1) and L(g2) = ß(G1)+ 1. Let N (g1) be the set of labels given by L to the neighbours 

of g1 in G1 for each {g1; g2}∈ M ′, and let W (g1) = {0; 1; 2;:::; ß(G1)- 2} N (g1). Given that ß(G1)<∆(G1)+2, ׀W (g1)׀ 

implies that W (g1) is not vacant because dG(g1)<(G1)+2 _1 _∆(G1)=1.Therefore, by relabeling each g2 with a label from 

W, we can create a new labelling L′. (g1). Any two relabeled vertices have identical labels under both L and L2, meaning 

that they are at least three distances apart. Since L′ has a spread of ß(G1) + ß(G2) + 1, it is clear that it is a L(2; 1)-

labeling. 

 

Corollary 2.3.1.   

If G is a k-regular graph for k 1, then the following corollary holds: ß(GM + G)62ß(G) + 1 for all matchings M. 

Proof: ß(G) =2 if k = 1, then. Inferring that GM + G is a graph with a maximal degree of at most 2, ß(GM + G)6 4 

2ß(G)+1. If k = 2, then the conclusion is inferred from Theorem 2.2.1 by ß(G) = k + 2 from the debate that comes right 

before it.  

 

Definition 2.1.2:  

For n = 3, a 3-regular graph G of order 2n is referred to as a generalised Petersen graph of order n if and only if G is 

made up of two disjoint n-cycles, referred to as the inner and outer cycles, where each vertex on the outer cycle is 

adjacent to a (necessarily unique) vertex on the inner cycle. The terms "spoke" and "inner cycle" refer to the inner and 

outer cycles, respectively, and "edge joining an outer cycle vertex to an inner cycle vertex" refers to the edge connecting 

two vertex on the outer cycle. We refer to the group of n-order generalised Petersen graphs as GPG (n). 
 

 

 

Fig. 1. The two graphs in GPG(4). 

 

The two graphs in GPG(4) are illustrated in Fig. 1. 

 

The Petersen graph PG is obviously a constituent of GPG(5), and each component of GPG(n) is an M-sum of two n-

cycles, where M is a perfect matching. Therefore, from Carollary 2.3.1 it follows that ß(G)69 for all G in GPG because 

ß(Cn)=4 for n3 (n). In the scenario where =3, we draw attention to the fact that this upper limit is consistent with the 

Griggs and Yeh 2 conjecture.The extended Petersen graph K2 Cn serves as the definition of the n-prism Pr(n) for n = 3. 

Figure 1a presents a 4-prism, and in [7], the following is proved. 

  

Theorem 2.2.3:  

 For n= 3, 5 if n = 3k for some k; otherwise, ß(Pr(n)) = 6:We will acquire a more accurate upper bound on the ß-number 

of generalised Petersen graphs in the sections that follow. 

 

Theorem 2.2.4: 

        We have ß(G)68 for k<1 and G ∈ GPG(3k). 

Proof. Using the repeating pattern of 1, 3, and 5, we first create a labelling L (not strictly a L(2; 1)-labeling) by  
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labelling the vertices on the outer cycle in ascending subscript order. L(wi)=2j + 1 where j, i mod 3 (i.e. Similar to this, 

we label the inner cycle's vertices in ascending subscript sequence in accordance with the pattern of 0, 8, 6. We are done 

if L is a L(2; 1)-labeling.A maximal non-empty collection X of vertices with label 0, each of which is adjacent to a 

vertex with label 1, exists in the absence of L. Alternatively, a maximal non-empty collection Y of vertices with label 

6, each of which is adjacent to a vertex with label 5, exists in the absence of L. By altering the labels of each vertex in 

X and Y from 0 to 4 and 6 to 2, respectively, we can create a L(2; 1)-labeling. 

 

Theorem 2.2.5: 

 In the case of k=1 and G=GPG(3k + 1), ß(G)68. 

Proof. By first creating a labelling L (not necessarily a L(2; 1)-labeling) such that L(w0) = 7, we modify the approach 

in the proof of Lemma 2.7. The remaining 3k vertices on the outer cycle are then given labels in the repeating pattern 

of 1, 3, and 5 in ascending order of the vertex subscripts. Let v0 be close to w0 without losing meaning, and let L(v0) 

equal 2. In ascending order of the vertex subscripts, we label the unlabeled vertices on the inner cycle, observing that v3 

k is the only vertex labelled 6 under L within two distances of v0 .Either a vertex with identifier 5 is nearby the vertex 

v3 k, or it is not. If so, permuting the labels 1, 3, and 5 on the outer cycle will allow us to create a labelling L′ in which 

v3 k is not close to a point with the label "5".In order to create a L(2; 1)-labeling of G from L′, the following steps must 

be taken: each vertex labelled 6 that is next to a vertex labelled 5 under L′ shall be relabeled as 2, and each vertex 

labelled 0 that is next to a vertex labelled 1 under L′ shall be relabeled as 4. 

 

Lemma 2.4.1:   ß(G)68 for k<2 and G ∈ GPG(3k + 2). 

Proof. By first establishing a labelling L (not necessarily a L(2; 1)-labeling) such that L(w0)=L(w4) =7 and then 

assigning labels to the remaining 3k vertices on the outer cycle in the repeating pattern of 1, 3, and 5 in ascending order 

of the vertex subscripts, we modify the approach in the proof of theorem2.2.5 Without losing breadth, we allow v0 to be 

near w0 and w4 to be near vj for some j. 

                 Suppose L(v0) = 2 and L(vj) = 4. We use elements of 0, 8, and 6 to label the remaining 3k inner cycle vertices 

in such a manner that exactly one vertex on the inner cycle labelled 6 is within two distances of vertex v0 and exactly 

one vertex on the inner cycle labelled 0 is within two distances of vertex vj. Start by labelling the unlabeled vertices on 

the inner circle in ascending order of the subscripts of the as of yet unlabeled vertices, following the repeating pattern 

0, 8, 6.  

                    Then, precisely one vertex on the inner cycle with the label "6" is close to v0 by a distance of two.Otherwise, 

exactly two vertices on the inner cycle labelled 0 exist within two distances of vj, and as a result, precisely one vertex 

on the inner cycle labelled 8 exists within two distances of vj.  We achieve the intended labelling L by changing the 

repeating pattern from 0, 8, 6 to 8, 0, 6. 

               A vertex on the outer cycle with label 5 is either next to the singular vertex v with label 6 within two distances 

of v0, or it is not. Similar to this, a vertex on the exterior cycle with label 1 is either next to a unique vertex v with label 

0 within distance two of vj, or it is not.We can create a labelling L′ where v is not next to a vertex with a label of 5 and 

v is not next to a vertex with a label of 1 by permuting the labels 1, 3, and 5 on the outer circle.Now, we create a L(2; 

1)-labeling of G from L′ as follows: each vertex labelled 6 that is next to a vertex labelled 5 under L′ shall be relabeled 

as 2, and each vertex labelled 0 that is next to a vertex labelled 1 under L′ shall be relabeled as 4.  
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Fig. 2. The four graphs in GPG(5), along with labelings (c,d). 

 

We can verify that GPG(5) =4 by noting that for n< 4, the diameter of each graph in GPG(n) is at least 4 (see also [1]). 

These four graphs are shown in Figure 2, along with L(2; 1)-labelings of the graphs in Figures 2c and 2d with a range 

of seven.The 5-prism in Fig. 2a has ß-number 6 Carollary 2.3.1. , making it a graph. The graph in Fig. 2b is the Petersen 

graph PG, and it has ß-number 9 because, given that PG has a diameter of 2, each of  its 10 vertices has a unique label 

that is allocated by a L(2; 1)-labeling. Therefore, ß(PG)<9. 

 

Proposition 2.5.1:   Allow G ∈ GPG (n). If G is isomorphic to PG, then ß(G)=9. Otherwise, ß(G)68. 

We observe that PG does not stand alone among generalised Petersen graphs only in the case of Lemma 2.4.1. As 

demonstrated by Castagna and Prins [2], all generalized According to their description, all Petersen graphs besides PG 

have a chromatic index of 3 (whereas ′(PG) = 4).We have not discovered a generalised Petersen graph with ß-number 

8, setting an upper limit of 8 on the ß-number of generalised Petersen graphs other than PG. We observe that only Pr(3), 

which has ß-number 5theorem 2.2.3, is present in GPG(3). 

            Additionally, GPG(4) includes Pr(4) and the graph in Fig. 1b, the former of which has ß-number 6 (again by 

Theorem 2.2.3), and the latter of which has ß-number 7 by a different reasoning from the one that ß(PG) =9. In Figs. 2a, 

c, and d, the three GPG(5) PG members are depicted. It has already been established that they have ß-numbers 67. We 

then demonstrate that each component of GPG(6) has a ß-number of no more than seven.. As a result, we can assign the 

numbers 0, 4, and 6 to the inner cycle's vertices in ascending subscript order in accordance with some recurring pattern, 

such that L(vi)=L(vi+3)=4. We are done if L is a L(2; 1)-labeling. A maximum non-empty collection X of vertices with 

label 1 exists, each of which is next to a vertex with label 0, or a maximal non-empty collection Y of vertices with label 

6, each of which is next to a vertex with label 7.By altering the labels of each vertex in X from 1 to 5 and each vertex in 

Y from 6 to 2, we can create a L(2; 1)-labeling.We can infer the following from the debate above. 

 

Theorem 2.2.6: 

When G ∈ GPG(n) with ß(G)=8, n is equal to 7. 

Finally, we hypothesise that there is neither a generalised Petersen graph with ß-number 8 nor a 3-regular graph with ß-

number 8. Additionally, according to our research, the Petersen graph is the only linked 3-regular graph with ß-number 

9.  

 

CONCLUSION: 

In this paper  discussed with demonstrate that the ß-number of every generalised Petersen graph is limited from 

above by 9 by introducing the idea of a matched sum of graphs. Then, we demonstrate that, with the exception of the 

Petersen graph itself, this limit can be improved to 8 for all generalised Petersen graphs with vertex order 12. 
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