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1. INTRODUCTION:   

 Fault detection is a challenging task when limited number of classical diesel generators and renewable units 

(wind or solar) generating few MW of power exports to grid through distribution system. The faults currents are 

significantly low for such systems and therefore, overcurrent and classical protection schemes are not reliable to detect 

the faults [1]-[2].   Hence,  improved protection schemes are necessary to enhance the power system security during 

faults and other disturbances [3]. In the fault detection process of the distribution networks included with distribution 

generation, dynamic behaviour of system included with magnitude and direction changes of the  current and voltage 

initiates significant problems [4]. Several approaches were proposed to mitigate these issues in order to enhance the 

detection process.  

      The algorithms monitor the quantities like amplitude and phase to detect various faults in the distribution system 

with distributed generation (DG) according to the literature provided in [5]-[6]. Phase angle of current information 

comparison scheme [5], impedance angle-based comparison approach [6], differential components [7], total harmonic 

distortion (THD)-based scheme [8] and energy-based scheme [9] are few examples for regular protection schemes of 

distribution systems with DGs or microgrid protection in grid connected and islanding modes. These schemes are 

implemented based on the variation of certain components with initiation of faults. For example, the current phase 

changes at each node due to inception of fault and it is compared with the previous information  to detect the faults as 

reported in [5]. In [6], impedance angle is considered which has the merit of both voltage and current features during 

the faults. In [7], the energy is calculated from the differential value of the superimposed component of the positive 

sequence impedance to detect the faults as an extension of the work presented in [6]. The events are analysed with THD 

information since the presence of a particular level of THD may change according to the event initiated in the system 

[8]. One common feature of majority of these schemes is estimating the energy associated with corresponding system 

measurement is the key to detect the abnormalities from the normal events. The reliability is one key attribute of the 

protection schemes enhanced when aforementioned techniques are assisted with wavelet transform (WT) like signal 

processing tools [10]. Because the signal processing techniques are used extensively in the protection schemes for fault 

detection tasks of the transmission and distribution networks to improve the efficacy of the FDLs. In [11], a full study 

of the use of various signal processing were used to detect the islanding situation of the DG coupled to a distribution 
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network to export power to the grid. In [12], WT is used for fault detection in a DG-penetrated electrical power system. 

The features from WT like tools not only help to enhance the FDL performance, but also useful to extend for 

classification tasks. The features of the either direct voltage/current associated quantities or outputs of these components 

of the signal processing tools are used for machine learning models such as support vector machine (SVM) to detect 

faults and to discriminate the faults from islanding events [13]. In [14], extreme learning machine (ELM) is applied to 

protect the microgrid in presence of wind speed intermittency. Apart from these intelligent techniques, approaches 

designed from the signal variations  are imposed on features extracted using signal processing techniques [15]-[16]. In 

[17], Hilbert-Huang transform (HHT)-based differential protection scheme is proposed to detect the faults. Most of these 

methods are capable of detecting faults due to their significant change in voltage/current and associated parameters. 

Empirical wavelet transform (EWT) is investigated in [17] to detect faults with high impedances in distribution system. 

The features associated with time-frequency transform enable the process of detection of faults with high impedance in 

an inverter interfaced distribution system. Variational mode decomposition  (VMD) technique is used in [19] to detect 

faults with high impedance with an energy metric known as TEO.  

     In this paper, variational mode decomposition (VMD) technique is used to detect the faults in DG connected 

distribution lines. The process initiated with the measuring the 3-phase currents and processed through VMD technique. 

The VMD technique decompose the signal into set of modes and dominated mode is selected to compute the energy 

metric. TEO is adopted to estimate the energy and compared with pre-set threshold to detect the faults. The performance 

of the proposed scheme is tested on different faults by varying location, inception and resistance values of the faults. 

The rest of the article organizes as follows: section 2 provides methodology, section 3 provides test system information, 

section 4 discusses various case studies and finally conclusions are presented in section 5. 

       

2. PROPOSED METHOD: 

        Because of its strong mathematical foundation, resistance to noise, and absence of mode mixing effects, variational 

mode decomposition (VMD) is a very dependable technique for signal decomposition in a variety of fields. By 

addressing important drawbacks like mode mixing and noise sensitivity, which frequently impair the quality of 

decomposition in EMD, VMD provides greater accuracy and stability than conventional techniques like Empirical Mode 

Decomposition (EMD). In particular, the input signal y(t) is broken down into a finite number of Intrinsic Mode 

Functions (IMFs), which is comparable to EMD but has improved characteristics because of its distinct algorithmic 

design [27]. VMD is unique in that it uses a variational optimization framework that includes three key constraints: 

frequency mixing to guarantee that the modes are well-separated in the spectral domain, Wiener filtering to reduce noise 

and improve mode extraction, and the Hilbert Transform (HT) to examine the signal in the frequency domain. VMD is 

a flexible technique in signal processing applications because of this mix of limitations, which not only guarantee a 

more accurate decomposition but also permit adaptation to various signal types. The VMD algorithm's applicability is 

further increased by the user's ability to alter the number of modes and customize the decomposition process to meet 

particular needs thanks to its iterative nature. VMD is the perfect option for this study because of these qualities, which 

provide a trustworthy and the idea behind VMD can be seen as a constrained variational issue, expressed as 
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where 𝑣𝑛 = nth mode, 𝛿 = Dirac distribution, 𝜔𝑛 = center frequency. Here constrained problem is converted as an 

unconstrained one by introducing a Lagrangian multipliers (λ) and penalty factor (α). 
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In Eq, (1) and (2), modes are decomposed using the expression using Equation (3) 
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The center frequency is determined by  
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Additionally, λ will be updated using 

λ𝑚+1 = λ𝑚 + 𝜏(𝑦 − ∑ 𝑣𝑛
𝑚+1

𝑛 )                                                                 (5) 

here 𝜏 = update parameter. The updating process concludes after convergence criteria is satisfied. 

||𝑣𝑛
𝑚+1−𝑣𝑛

𝑚||2
2

||𝑣𝑛
𝑚||2

2 < 𝜀                                                                                  (6) 

The VMD is iterative process and step-by-step, modes are decomposed until the residual component is sustain similar 

to EMD. After processing the current information measured at the relay location through VMD, IMFs are extracted, and 

the detection procedure follows the below steps: 

• The current will be extracted at the relay location. 

• The VMD is used to process the current signal and extract the relevant IMFs,  and the dominant features are 

identified to detect the events. After examining the several cases,  IMF-2 is adopted in this work as dominant 

IMF to detect the faults and to discriminate the faults from normal conditions.  

• Teager energy operator (TEO)  is applied to IMF-2 in order to calculate the signal's energy. The TEO uses three 

consecutive samples to calculate the energy of IMF-2, 

y(m) = y2(m) − y(m − 1) y(m + 1)                                                    (7) 

            Where, y(m − 1), y(m), and y(m + 1) are the three consecutive samples. 

• This TEO is compared with a predetermined threshold, and faults are recorded when it is exceeded to generate 

the trip signal. The complete flow of the proposed approach is represented in Fig. 2 

 
Figure 1. Algorithm of proposed fault detection mechanism 

     

3. TEST SYSTEM: 

            The proposed VMD-TEO scheme is tested on grid connected DG system whose single line diagram is presented 

in Fig 2.  The distribution line is at 33 kV connected to a 132 kV substation. A distributed generator, namely synchronous 

generator, is connected to this system. The system's details are based on [20] and the current information is measured at 

bus-2 to assess the performance of the VMD-TEO scheme.  
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Fig. 2. Single line diagram of the test system. 

 

4. SIMULATION RESULTS : 

             To test the outputs of the suggested protection scheme under different faults scenarios in presence of DGs,   a 

test system shown in Fig. 2 is chosen and simulations are performed in MATLAB/SIMULINK. All 11-types of faults 

are simulated on test system by varying the location of the fault, inception of the fault and resistance of the fault. Later, 

few typical cases are investigated to test the efficacy of the proposed scheme.  

4.1. Single line-ground faults 

The ground faults involved with single phase of transmission/distribution are mostly occurring according to the statistics 

and the performance of proposed VMD-TEO scheme is tested under three different line-to-ground faults. First, at 15 

Km from the grid connected point, an A-g fault is initiated at inception time of 2.7 sec with a fault resistance of 10 Ω. 

Fig. 3 shows the combined plots of the instantaneous currents, IMF 2 of the VMD after processing phase-A current and 

TEO is the corresponding energy value. At the fault initiation, the TEO exceeds the pre-set threshold and therefore the 

A-g fault is detected by the VMD-TEO method. The B-g fault located at 12 Km from the relay point with inception time 

of 2.92 sec and fault resistance of 20Ω is simulated in the test system and the corresponding instantaneous current 

information is recorded and plotted in Fig. 4(a). 

 
Fig. 3:  Outputs VMD-TEO scheme during A-g Fault, a. currents, b. IMF2, c. TEO 

This current data is processed through VMD and IMF2 is extracted and provided in Fig. 4(b). The TEO calculated from 

the IMF2 information is provided in Fig. 4(c). For IMF2 and TEO calculations, only phase-B current is considered. 

Furthermore, a C-g Fault located at 8 Km from the relay point with inception time of 2.8 sec and fault resistance of 30Ω 

is simulated and results are plotted in Fig. 5. The instantaneous current signal measured at the relay location is plotted 

in Fig. 5(a). The phase-C current data is processed through VMD and IMF2 is extracted and provided in Fig. 5(b). The 

TEO calculated from the IMF2 information is provided in Fig. 5(c). These three cases are (A-g, B-g and C-g faults) 

simulated at different fault parameters like location, inception and fault resistances to validate the behaviour of VMD-

TEO scheme and the responses presented in Figs 3, 4 and 5 
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Fig. 4:  Outputs VMD-TEO scheme during B-g Fault, a. currents, b. IMF2, c. TEO 

 
Fig. 5:  Outputs VMD-TEO scheme during C-g Fault, a. currents, b. IMF2, c. TEO 

4.2. Double line and Double line-ground faults 

       To evaluate the performance of the proposed fault detection scheme under various multi-phase fault conditions, six 

distinct fault scenarios are simulated in a test power system. These scenarios include both line-to-line (L-L) faults—A-

B, B-C, and A-C—and line-to-line-to-ground (L-L-g) faults—A-B-g, B-C-g, and A-C-g. Each fault simulation is 

conducted under varying conditions, including different fault locations, inception times, and fault resistances, to 

comprehensively assess the robustness of the VMD-TEO algorithm. The current data generated from these faults is 

processed using the VMD technique to extract the IMFs, which serves as the core of the proposed approach for fault 

detection and classification. The detection performance is measured in terms of detection time and the ability to 

accurately identify the faulted phases. The results of this evaluation are detailed in Table 1, which summarizes the fault 

type, fault location (in kilometers), fault inception time (in seconds), fault resistance (in ohms), detection time (in 

milliseconds), and the classification output specifying the identified faulted phases. The results indicate that the 

proposed scheme achieves rapid fault detection, with detection times consistently within 3–4 milliseconds across all 

fault cases, regardless of variations in fault location, timing, or resistance. Moreover, the scheme demonstrates accurate 

classification of faulted phases for both L-L and L-L-g faults, correctly identifying the phases involved in all six 

scenarios. For example, in the A-B fault at 10 km with a resistance of 5 Ω occurring at 2.65 seconds, the algorithm 

detects the fault in 4 milliseconds and identifies the faulted phases as A and B (Fig. 6). Similarly, in the B-C fault at 2 

km with a resistance of 1 Ω occurring at 2.68 seconds, the algorithm detects the fault in 3 milliseconds and correctly 
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classifies the faulted phases as B and C (Fig. 7 (a)). For A-C, A-B-g, B-C-g and A-C-g, the VMD-TEO results are 

presented in Fig. 7(b), 7(c), 7(d) and Fig. 8. 

 
Fig. 6:  Outputs VMD-TEO scheme during A-B Fault, a. currents, b. IMF2, c. TEO 

 
Fig. 7:  Outputs VMD-TEO scheme during a. B-C fault, b. A-C fault, c. A-B-g fault, d. B-C-g fault 

 

(a) (b) 

(c) (d) 
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Table 1. Detection times and faulty phase identification outputs for different L-L and L-L-g faults. 

 
 

4.3. Symmetrical  faults 

    For the symmetrical faults, the result of VMD-TEO is provided in Fig. 9. These results are obtained when the fault 

component parameters are fixed at fault location of 13 km, inception time of 2.6 sec and fault resistance of 5 Ω. For this 

simulated case, the method successfully performed both detection and faulty phase identification as shown in results 

provided in Fig. 9. Irrespective of values of the parameters like location, resistance and inception, the symmetrical faults 

are detected in less time by the proposed method.  

4.4. High resistive  faults 

    The response of the VMD-TEO scheme against high resistive fault is validated in this case study. The fault current 

during the high resistive fault is extremely low and it is always challenging to detect such types of faults in distribution 

systems. To illustrate the advantages of the VMD-TEO scheme, an A-g fault with a fault resistance of 75 Ω is simulated 

in the test system (fault location of 10 km from the bus 2 and fault inception time of 2.55 sec) and results are provided 

in Fig. 10. In Fig. 10(a), the three phase current signals are provided, and phase-A information is processed through 

VMD to extract the IMF 2 presented in Fig. 10(b). The final result of VMD-TEO is available in Fig. 10(c) shows the 

ability of the scheme to detect the typical faults along with normal faults. 

 
Fig. 8:  Outputs VMD-TEO scheme during A-C-g Fault, a. currents, b. IMF2, c. TEO 
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Fig. 9:  Outputs VMD-TEO scheme during A-B-C-g Fault, a. currents, b. IMF2, c. TEO 

 
Fig. 10:  Outputs VMD-TEO scheme during A-g high resistive  fault, a. currents, b. IMF2, c. TEO 

  

5. CONCLUSION 

         This work proposes a VMD-TEO approach for detecting various faults in DG-connected distribution lines when 

in grid linked mode. The scheme's reliability is confirmed for faults such as L-g, L-L, L-L-g, and L-L-L-g, which are 

reproduced on the test system by changing the fault conditions such as position, initiation, and resistance. The VMD-

TEO approach generated trip signals in all of the test situations. Furthermore, the suggested method detects typical high 

resistive defects quickly, which is another advantage of the algorithm. In the future, the approach needs to be validated 

to detect the islanding circumstances and distinguish them from defects. 
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