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1. INTRODUCTION 

DC–DC converters play a vital role in many industries (e.g. aerospace, power grids, and renewable energy) owing to 

their ability to efficiently regulate voltage levels (1); (2). However, converters are susceptible to both hard faults (e.g. 

short/open circuits) and soft faults (e.g. component aging and parameter drift). Soft faults manifest as minor performance 

degradations, such as slight overshoots or waveform distortions, which may be overlooked by conventional monitors (3). 

Although they do not cause immediate failure, soft faults gradually undermine reliability, making early detection 

essential to prevent costly downtimes and repairs. 

Conventional threshold-based monitoring methods often struggle with soft faults because the deviations they cause 

remain within the normal operating range and can be masked by the routine variability. To address this challenge, 

machine learning techniques have gained interest for their ability to detect subtle patterns in sensor data that may indicate 

soft faults (4). Prior studies have employed signal decomposition methods (such as Empirical Mode Decomposition 

(EMD) and wavelet transforms) in combination with classifiers such as Support Vector Machines (SVM) and neural 

networks (5). For example, Huang et al. introduced EMD (6), which has been widely used in non-linear, non-stationary 

signal analysis, and Torres et al. proposed CEEMDAN (7) to mitigate EMD’s limitations. Donoho (8) and Yan & 

Gao (9) demonstrated the benefits of wavelet thresholding in denoising high-frequency signal components while 

retaining the fault-sensitive characteristics. In parallel, machine learning models such as SVMs (10), ELMs (11), and 
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gradient-boosted trees (12) have gained popularity for fault classification owing to their generalisation capabilities. 

However, fixed hyperparameters in these models often lead to suboptimal performance. Bayesian optimisation provides 

a probabilistic and sample-efficient method for tuning hyperparameters and has recently gained traction in industrial 

diagnostic systems. 

Despite these advances, limited studies have fully integrated adaptive decomposition (ICEEMDAN), wavelet-based 

denoising, and Bayesian-optimised classification. This study addresses this gap by proposing a unified diagnostic 

pipeline for soft-fault identification in DC–DC converters. Our contributions are: 

Despite these advances, limited studies have fully integrated adaptive decomposition (ICEEMDAN), wavelet-based 

denoising, and Bayesian-optimised classification. This study addresses this gap by proposing a unified diagnostic 

pipeline for soft-fault identification in DC–DC converters. Our contributions are: 

⚫ We developed an integrated framework combining ICEEMDAN decomposition, wavelet denoising, and statistical 

feature extraction to analyse DC–DC converter signals. 
⚫ We applied and compared three machine learning models (SVM, ELM, and XGBoost) for multiclass soft-fault 

classification using the extracted features. 
⚫ We enhanced the classification performance by implementing Bayesian optimisation for automated hyperparameter 

tuning. 
⚫ We validated the proposed method using experimental data and compared its performance with those of the 

conventional EMD and CEEMDAN-based approaches under clean and noisy conditions. 

2. LITERATURE REVIEW 

Several studies have explored fault detection in power electronic systems, particularly DC–DC converters, using both 

traditional signal processing and modern machine learning techniques (4). Huang et al. introduced Empirical Mode 

Decomposition (EMD), which has since been widely applied in nonlinear, non-stationary signal analysis (13). However, 

the EMD suffers from mode mixing, which reduces its effectiveness in practical diagnostics. Torres et al. (7) proposed 

CEEMDAN, which mitigates some of these limitations by adding adaptive noise during the decomposition. Colominas 

et al. (14) further improved this with ICEEMDAN, enhancing decomposition reliability. 

Donoho (8) and Yan & Gao (9) demonstrated the effectiveness of wavelet thresholding in denoising high-frequency 

signal components while retaining the fault-relevant characteristics. In parallel, machine learning methods such as 

support vector machines (SVMs)  (10), extreme learning machines (ELMs)  (11), and gradient-boosted trees (12) have 

gained popularity for fault classification owing to their generalisation capabilities and efficiency. However, fixed 

hyperparameters in such models often lead to suboptimal performance. Bayesian optimisation provides a probabilistic 

method for tuning these hyperparameters and has recently been applied in industrial diagnosis scenarios. 

Despite these advances, the literature shows that limited work has fully combined adaptive signal decomposition 

(ICEEMDAN), wavelet-based denoising, and Bayesian-optimised classification. We propose to fill this gap by 

integrating these techniques into a unified diagnostic pipeline for soft faults in DC–DC converters. 

3. OBJECTIVES  

The primary objectives of this study are as follows: 

1. To develop an integrated framework combining ICEEMDAN decomposition, wavelet denoising, and statistical 

feature extraction for analysing DC–DC converter signals. 
2. To apply and compare three machine learning models (SVM, ELM, and XGBoost) for soft-fault classification using 

extracted features. 

3. We enhanced the classification performance by implementing Bayesian optimisation for automated 

hyperparameter tuning. 
4. The proposed method  was validated using experimental data, and its performance was compared with that of the 

conventional EMD and CEEMDAN-based approaches under clean and noisy conditions.  
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4. METHODOLOGY 

4.1 Feature Extraction Process 

Feature extraction is crucial for transforming raw time-series data into representations that can be analysed using 

machine learning algorithms. We propose a three-stage feature extraction framework: ICEEMDAN decomposition, 

wavelet denoising, and statistical feature computation. This process captures the key signal characteristics required to 

distinguish between faulty and healthy conditions. First, the complex voltage signal is decomposed into simpler 

oscillatory components, called intrinsic mode functions (IMFs). Second, the noise in each component was reduced via 

wavelet denoising. Third, statistical features are extracted from the denoised components. Figure 1 illustrates the overall 

feature extraction process. 

 

 
Figure.1. Proposed Feature Extraction Method 

 

ICEEMDAN Decomposition 

In the first stage, ICEEMDAN was applied to the raw signal. ICEEMDAN (14) extends the traditional Empirical Mode 

Decomposition (13) by adding adaptive white noise during the sifting process, which significantly reduces mode 

mixing. Through the iterative addition of noise and calculation of local means, ICEEMDAN extracts a series of distinct 

IMFs from the signal. Formally, the signal is decomposed as follows: 

x(t)= ∑ IMFi

N

i=1

(t)+rN(t) 

where  is the  th intrinsic mode function, and  is the final residual trend. In practice, the signal typically yields 

approximately 4–6 IMFs, with the residual  becoming a monotonic baseline. Compared with classic EMD (6), 

ICEEMDAN ensures that each IMF is physically meaningful and contains significantly less spurious noise. This makes 

ICEEMDAN particularly suitable for detecting subtle degradation patterns from soft faults in DC–DC converters. 

Wavelet Denoising 

After decomposition, each IMF may still contain a high-frequency noise. We applied a discrete wavelet transform 

(DWT) to each IMF and performed soft thresholding  (8) to suppress noise. Specifically, the high-frequency detail 

coefficients were thresholded to remove noise while preserving important signal features. The denoised IMFs were then 

reconstructed. This denoising step enhances the clarity of the modes and helps isolate the fault-induced variations. 

Finally, these denoised IMFs are summarised by time-domain statistics: for each IMF, we compute the mean, root mean 

square (RMS), variance, skewness, and kurtosis. These statistics quantify the amplitude distributions and waveform 

characteristics that reflect component degradation. Concatenating all selected IMF features yields a feature vector that 

is sensitive to the subtle changes caused by soft faults. 

 

Time-Domain Feature Extraction 

We extracted statistical features that are discriminative of faults from each denoised IMF. Our implementation computes 

metrics such as the maximum, minimum, peak-to-peak, mean, root mean square (RMS), variance, standard deviation, 

skewness, kurtosis, waveform factor, peak factor, pulse factor, mean square value, and clearance factor. These 14 

features capture both the dimensional (e.g. peak values and RMS) and dimensionless (e.g. skewness and kurtosis) 

properties of the signal, improving noise robustness. Table 1 summarises these time-domain features and their 
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corresponding calculations. The combined set of features from all the IMFs forms the input for the classifiers. This rich 

feature set enables the detection of subtle variations in the system behaviour, which often signal soft faults. 

Table 1. Time-Domain Features Extracted from Each Denoised IMF. 

Table 1. Time-domain features extracted from each denoised IMF. These features (seven dimensional and seven 

dimensionless) ensure that the characteristics of various soft fault types are captured. 

4.2 Machine Learning Classifiers and Bayesian Optimization 

The extracted feature vectors were used to train three different classifiers: Support Vector Machine (SVM), Extreme 

Learning Machine (ELM), and Extreme Gradient Boosting (XGBoost) are three distinct algorithms. SVM (10) creates 

a decision boundary with the maximum margin, making it suitable for small-to medium-sized datasets. Its primary 

hyperparameters include the regularisation parameter and kernel parameters, such as the width of the RBF kernel. The 

ELM (11) is a feedforward neural network with a single hidden layer, where the input weights are randomly set, and 

only the output weights are determined analytically; the number of hidden neurones is its main hyperparameter. 

XGBoost (12) constructs an ensemble of decision trees using gradient boosting, delivering top-tier performance; its 

hyperparameters encompass tree depth, learning rate, subsampling ratio, and regularisation terms.  

To optimise performance, we applied Bayesian hyperparameter optimisation to each classifier. Bayesian optimisation 

constructs a probabilistic surrogate model, often a Gaussian process, to represent the objective function, which, in this 

case, is the classification accuracy. It employs an acquisition function, known as Expected Improvement, to effectively 

navigate the hyperparameter space. This method significantly reduces the number of evaluations required compared 

with a comprehensive grid search. In our setup, we tuned each model as follows: for SVM (RBF kernel), we tuned  and  ; 

for ELM, we tuned the number of hidden nodes; and for XGBoost, we tuned the tree depth, learning rate, and 

regularisation. We allocated approximately 50 Bayesian optimisation evaluations per model. The result is a more 

efficient search that consistently finds near-optimal parameters, thereby boosting classification accuracy without 

excessive computation. 

Figure 2 illustrates the overall diagnostic workflow, which integrates ICEEMDAN decomposition, wavelet denoising, 

feature extraction, and Bayesian-optimised classification. 
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.  

Figure 2. Flowchart of the DC–DC converter soft fault diagnosis process 

 

5. EXPERIMENTAL SETUP 

5.1 Fault and Circuit Design 

The experimental validation was conducted on a 150 W DC–DC boost converter (input 10–32 V, output 12–35 V) using 

a UC3843 PWM controller and 100 Ω load. Table 2 lists the key specifications of the converter. The circuit includes 

two electrolytic capacitors  and  (nominal 1000 μF each). We focused on capacitor degradation because the aging of 

electrolytics is a common source of gradual faults in converters. We defined 16 operating conditions (fault modes) as 

follows. 

⚫ f11: Healthy baseline (both C1 and C5 within ±10% of nominal). 

⚫ f12–f14: Incremental degradation of C1 by 10–50% (in 10% steps), with C5 nominal. 

⚫ f21–f24: Incremental degradation of C5 by 10–50%, with C1 nominal. 

⚫ f31–f44: Simultaneous degradations of both C1 and C5 by 30–50% (combinations of 30–40% and 40–50% as 

detailed below). 

 

These represent single- and dual-capacitor soft-fault scenarios. Table 3 specifies the exact capacitances and degradation 

ranges for each mode. For each scenario, high-resolution voltage and current measurements were collected under steady-

state load conditions to produce a labelled multivariate time-series dataset. Figures 3–5 (circuit schematic, experimental 

platform, and physical converter) illustrate this setup. 

Table 2. Specifications of the 150 W DC–DC Boost Converter. 

 

 

 

 

 

 

 

Parameter Specification 

Circuit 150 W DC–DC boost converter 

Input voltage 10–32 V 

Output voltage 12–35 V 

Input current 10 A (max) 

Output current 6 A (max) 
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Table 3. Capacitive Degradation Modes in the 150 W Boost Converter (Fault Modes). 

Fault Mode C1 (µF) C5 (µF) Degradation Range (% for C1/C5 ) Level 

f11 988 916 0–10 / 0–10 1 

f12 988 887 0–10 / 10–20 2 

f13 988 653 0–10 / 30–40 3 

f14 988 554 0–10 / 40–50 4 

f21 864 916 10–20 / 0–10 5 

f22 864 887 10–20 / 10–20 6 

f23 864 653 10–20 / 30–40 7 

f24 864 554 10–20 / 40–50 8 

f31 655 916 30–40 / 0–10 9 

f32 655 887 30–40 / 10–20 10 

f33 655 653 30–40 / 30–40 11 

f34 655 554 30–40 / 40–50 12 

f41 546 916 40–50 / 0–10 13 

f42 546 887 40–50 / 10–20 14 

f43 546 653 40–50 / 30–40 15 

f44 546 554 40–50 / 40–50 16 

 

                       

 

Figure. 3. Real Circuit Schematic of the 150w DC-DC boost        Figure. 4.  Experiment Platform for the 150w DC-                                                                                 

converter                                                                                          DC boost converter                                                                                      

 

 
 

Figure.5. Boost converter Dc-Dc 150w 
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5.2 Data Collection and Training Protocols 

We used a standard, supervised learning protocol. The data from all fault modes were randomly split into 70% training 

and 30% testing sets, which were stratified by class. This split was repeated 3–4 times using different random seeds to 

account for sampling variability. For each split, we trained the classifiers on the training set and evaluated them on the 

held-out test set. The performance metrics (accuracy and macro F1-score) were averaged (with standard deviation) 

across the trials. 

In preprocessing, each test signal was decomposed by ICEEMDAN into approximately 4–6 IMFs until the residual 

became monotonic. Each IMF was then denoised via wavelet thresholding (a Daubechies wavelet with a universal 

threshold was used). Time-domain features (mean, RMS, variance, skewness, and kurtosis) were extracted from each 

denoised IMF, as described above. These IMF features were concatenated into a feature vector of approximately 20–30 

dimensions for each sample. 

For classification, we used an RBF-kernel SVM (tuning  and  ), an ELM (tuning the number of hidden neurones), and 

an XGBoost model (tuning the tree depth, learning rate, and regularisation). Bayesian optimisation (Gaussian process 

surrogate, expected improvement) was applied with a budget of approximately 50 evaluations per model to determine 

near-optimal hyperparameters. 

6. RESULTS AND DISCUSSION 

6.1 Feature Extraction Comparison 

The results confirmed that using ICEEMDAN for feature extraction yielded superior performance. In our experiments, 

ICEEMDAN consistently produced cleaner IMFs and more discriminative features than the basic EMD or CEEMDAN. 

For example, Table 4 shows that with XGBoost (no tuning), ICEEMDAN-based features achieve an average accuracy 

of 95.6 ±1.0%, whereas EMD-based features yield only 88.9 ±2.0%. The confusion matrices (omitted for brevity) 

indicate that mode mixing in plain EMD caused many misclassifications, whereas ICEEMDAN’s adaptive 

decomposition greatly reduced such errors. The CEEMDAN-based features exhibited intermediate performance 

(untuned XGBoost: ~93.1% accuracy). Overall, ICEEMDAN produced the cleanest modes and most discriminative 

features. Applying wavelet denoising to these IMFs further improved the accuracy by removing the residual high-

frequency noise. 

Figure 6. Decomposition of a sample signal by (a) EMD, (b) CEEMDAN, and (c) ICEEMDAN. 

 

                  

 

Figure 6. (1) IMFs Decomposition EMD           Figure 6. (2) IMFs Decomposition CEEMDAN 
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Figure 6. (3) IMFs Decomposition ICEEMDAN 

 

6.2 Classifier Evaluation 

Figure 7 (omitted) illustrates the confusion matrix for the best model (ICEEMDAN + XGBoost with Bayesian 

optimisation). The matrix was nearly diagonal, indicating that almost all the test samples were correctly classified. Only 

a few off-diagonal confusions occurred between adjacent fault levels (e.g. a slight misclassification between f23 and 

f24), which is expected given the gradual nature of the soft faults. Importantly, faults involving different components 

(e.g. f13 vs. f21) were never confused. The high values on the diagonal (often >90% for each class) indicate that the 

model reliably distinguishes between all fault conditions. For instance, with SVM+BO on a 70/30 split, the healthy class 

(f11) had a true-positive rate of approximately 97%, with only a few percent misclassified as the mildest fault (f12). In 

summary, the confusion matrices confirm that the proposed ICEEMDAN-based features enable accurate multiclass 

diagnosis, with residual errors occurring only between the most similar fault classes. 

Figure 7. Confusion matrices for (a) XGBoost, (b) SVM, (c) ELM, and (d) Combined classifier (ICEEMDAN features). 

 

 

            
Figure 7. (a) XGBoost                                       Figure 7. (b) SVM 
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Figure 7. (c) ELM                               Figure 7. (d) Combined classifier 

Across all classifiers (SVM, ELM, and XGBoost), Bayesian hyperparameter tuning consistently improved the 

performance by approximately 2–3%. XGBoost achieved the highest accuracy overall, reflecting its strong scalability. 

The combined pipeline (ICEEMDAN → wavelet denoising → feature extraction → BO-tuned classifier) significantly 

outperformed the alternatives based on plain EMD or CEEMDAN. 

Tables 4 and 5 summarise the average classification accuracy and F1-scores (mean ± std) for all models for the 70/30 

split. ICEEMDAN-based features yielded the highest scores in all cases. For example, ICEEMDAN+XGBoost achieved 

95.6%±1.0% accuracy without tuning, which increased to 97.2%±0.6% with Bayesian optimisation (Table 4). In 

contrast, CEEMDAN+XGBoost achieved 93.1%±1.2% (no tuning) and 95.0%±1.0% (BO), while EMD+XGBoost gave 

88.9%±2.0% and 91.5%±1.7%. The macro F1-scores in Table 5 show the same trend. These results confirm the 

effectiveness of our proposed approach. 

Table 4. Classification accuracy (%) (mean ± std) for different decompositions and classifiers (70/30 split). 

Decomposition SVM SVM (BO) ELM ELM (BO) XGBoost XGBoost (BO) 

EMD 85.3 ± 2.1 88.7 ± 1.8 82.1 ± 3.5 86.2 ± 2.4 88.9 ± 2.0 91.5 ± 1.7 

CEEMDAN 90.2 ± 1.9 93.4 ± 1.5 88.7 ± 2.3 91.9 ± 1.8 93.1 ± 1.2 95.0 ± 1.0 

ICEEMDAN 94.5 ± 1.3 96.7 ± 0.8 92.0 ± 1.6 94.8 ± 1.2 95.6 ± 1.0 97.2 ± 0.6 

Table 5. Macro F1-score (%) (mean ± std) for each model (70/30 split). 

Decomposition SVM SVM (BO) ELM ELM (BO) XGBoost XGBoost (BO) 

EMD 84.7 ± 2.2 87.9 ± 1.9 81.5 ± 3.4 85.4 ± 2.6 88.0 ± 2.1 90.8 ± 1.5 

CEEMDAN 89.5 ± 2.0 92.7 ± 1.6 87.8 ± 2.5 90.8 ± 1.9 92.5 ± 1.3 94.3 ± 1.1 

ICEEMDAN 93.8 ± 1.4 96.1 ± 1.0 91.5 ± 1.7 94.3 ± 1.3 94.8 ± 0.9 96.5 ± 0.7 

 

6.3 Comparison with EMD and CEEMDAN 

Traditional EMD suffers from severe mode mixing and often produces spurious components that obscure the fault 

features. For instance, when using XGBoost on EMD-derived features, the accuracy is limited (~89–92%), and 

confusion matrices show several misclassifications among similar fault classes. In contrast, ICEEMDAN’s adaptive 

noise injection produced much cleaner modes, pushing the accuracy above 97% (with tuning). CEEMDAN (7) reduces 

the residual noise compared to EMD, but it still does not completely separate certain fault components. This resulted in 

a 3–5% accuracy drop relative to ICEEMDAN. In practice, classifiers using CEEMDAN features misclassify 

approximately 4–6% of samples, whereas ICEEMDAN limits errors to less than 3%, even for adjacent fault classes. 

Thus, ICEEMDAN provides a clear advantage in terms of soft-fault feature quality. 
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6.4 Noise Sensitivity Testing 

We also evaluated the robustness to noise by adding white Gaussian noise to the test signals at different signal-to-noise 

ratios (SNRs): 20, 10, 5, and 0 dB. Classifiers trained on clean data were tested using these noisy signals. As expected, 

the accuracies of all models decreased as the SNR decreased. For the ICEEMDAN+XGBoost+BO model, the accuracy 

decreased from approximately 98% at 20 dB to 78% at 0 dB (see Table 6). The SVM and ELM models showed similar 

declines, although XGBoost consistently retained higher accuracy under noise. The relative drop in performance reflects 

the reduced distinguishability of fault features at a low SNR. These results indicate that ICEEMDAN coupled with 

wavelet denoising provides some noise immunity, but an extremely low SNR (e.g. 0 dB) significantly impairs feature 

extraction. 

Table 6. Accuracy (%) of the ICEEMDAN+XGBoost+BO model under various SNR levels. 

 

 

 

Figure 8. Accuracy of each model versus different SNR levels (XGBoost, SVM, and ELM). 

 
Figure 8. Model Accuracy vs. SNR Levels 

 

7. CONCLUSION 

This study introduces an innovative framework for detecting subtle soft faults in DC–DC converters. By combining 

ICEEMDAN signal decomposition, wavelet-based noise reduction, and Bayesian-optimised machine learning 

classifiers, this approach overcomes the limitations of conventional fault detection methods. Our results show that the 

ICEEMDAN-derived features significantly enhance the diagnostic accuracy compared to EMD and CEEMDAN. In 

particular, an XGBoost classifier tuned with Bayesian optimisation achieved an accuracy of up to 97.2% for multiclass 

fault identification. The integrated use of advanced signal separation, denoising, and hyperparameter tuning produces a 

robust fault detection system that maintains high precision, even under challenging conditions. This makes the method 

well-suited for critical applications (e.g. aerospace, power transmission, and renewable energy), where undetected soft 

faults can lead to costly failures. 

Future work may focus on deploying this fault detection framework in real-time monitoring systems and exploring deep 

learning models to further improve accuracy. Extending this approach to other types of power electronic converters 

could broaden its applicability and reinforce its utility in various industrial and commercial settings. 

REFERENCES 

1. Mohan N., Undeland T. M., Robbins W. P., (2003): Power Electronics: Converters, Applications, and Design 

(3rd ed.). Wiley, Hoboken, NJ, USA. 

SNR (dB) 20 10 5 0 

Accuracy 98% 92% 85% 78% 



INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD          
ISSN(O): 2455-0620                                                      [ Impact Factor: 9.47 ]          
Monthly, Peer-Reviewed, Refereed, Indexed Journal with  IC Value : 86.87         
Volume - 11,  Issue - 08,  August -  2025              
 

 

Available online on – WWW.IJIRMF.COM Page 64 

2. Kazerani M., (2020): A review of DC-DC converter topologies for renewable energy systems. IEEE 

Transactions on Power Electronics, 35(2), 984–1002. 

3. Blaabjerg F., Yang Y., Yang D., Wang X., (2018): Power electronics for renewable energy systems—Status 

and trends. IEEE Transactions on Industrial Applications, 54(6), 5814–5823. 

4. Patel M. R., Naikan V. N. A., (2018): Fault diagnosis of DC-DC converters using signal processing and machine 

learning. IEEE Transactions on Industrial Electronics, 65(7), 5726–5736. 

5. Cheng L., Qiu Z., Sripad K., (2019): A survey on fault diagnosis of power electronic circuits. IEEE Access, 7, 

120985–121003. 

6. Huang N. E. et al., (1998): The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-

stationary time series analysis. Proceedings of the Royal Society A, 454(1971), 903–995. 

7. Torres M. E. et al., (2011): A complete ensemble empirical mode decomposition with adaptive noise. IEEE 

Transactions on Signal Processing, 60(5), 1056–1069. 

8. Colominas M. A., Schlotthauer G., Torres M. E., (2014): Improved complete ensemble EMD: A suitable tool 

for biomedical signal processing. Biomedical Signal Processing and Control, 14, 19–29. 

9. Donoho D. L., (1995): De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613–

627. 

10. Yan R., Gao R. X., (2007): Wavelet packets and their applications in machine fault diagnosis. Mechanical 

Systems and Signal Processing, 21(2), 793–805. 

11. Randall R. B., (2021): Vibration-Based Condition Monitoring: Industrial, Aerospace, and Automotive 

Applications. Wiley, Hoboken, NJ, USA. 

12. Lei Y. et al., (2020): Applications of machine learning to machine fault diagnosis: A review and roadmap. 

Mechanical Systems and Signal Processing, 138, 106587. 

13. Cortes C., Vapnik V., (1995): Support-vector networks. Machine Learning, 20(3), 273–297. 

14. Huang G. B., Zhu Q. Y., Siew C. K., (2006): Extreme learning machine: Theory and applications. 

Neurocomputing, 70(1–3), 489–501. 

15. T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int. 

Conf. Knowl. Discov. Data Min., 2016, pp. 785–794.  

 

 


