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1. INTRODUCTION 

Magic squares are n×n grids filled with distinct integers (typically from 1 to n²) such that the sums of numbers in each 

row, column, and both main diagonals are equal—a value known as the magic constant (M). The study of magic squares 

dates back to ancient China (Lo Shu Square, 190 BCE), Indian Vedic mathematics, and Islamic and European traditions, 

where they were often associated with mysticism and numerology (Zhang & Swamy, 2021). Despite their historical 

roots, magic squares remain a subject of active mathematical and computational research due to their combinatorial 

complexity and applications in cryptography, optimization, and algorithm design (Sánchez-López, 2022). 

While classical methods (e.g., the Siamese method for odd-order squares) allow manual construction of small magic 

squares (n ≤ 5), higher-order squares (e.g., n ≥ 6) present significant computational challenges. The number of possible 

magic squares grows exponentially with *n*—for instance, there are 275,305,224 distinct 5×5 magic squares 

(Ollerenshaw & Brée, 2020), but enumerating 6×6 squares remains computationally intensive. Due to this limitation, 

AI and ML techniques have been applied in generating, classifying, and optimizing of magic squares (Chen et al., 2023). 

Thanks to newer techniques in evolutionary algorithms, deep reinforcement learning (RL), and constraint programming, 

new magic square configurations, including pandiagonal, associative, and multimagic squares can be discovered 

automatically (Kumar & Sharma, 2023). Moreover, magic squares produced by AI have been utilized in generating 

cryptographic keys, designing puzzles, and even researching quantum computers (Patel & Joshi, 2024). However, issues 

Abstract:    Magic squares, ancient mathematical constructs where numbers in a grid sum identically across rows, 

columns and  diagonals, have entered a new era of discovery through artificial intelligence. This review explores 

how modern computational approaches—including machine learning, evolutionary algorithms, and 

reinforcement learning—have transformed magic square generation, analysis, and application. While classical 
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like scalability, interpretability, and the absence of standardized datasets impede further use of AI methods for this task 

(Wang et al., 2023). 

 
Figure 1: Timeline of Magic Square Development 

 

This review investigates the interplay between classical magic square theory and new developments in artificial 

intelligence, recent results, open questions, and future research directions. We present a review of current literature i.e. 

from 2019-2024 from peer-reviewed studies on computation that deal with magic squares. 

 
2. Classical Methods of Constructing Magic Squares 

For centuries, systematic algorithms have been used to manually create magic squares. Though limited to small orders, 

they lay the groundwork for modern computational methods. This section reviews the historically significant 

construction procedures and their mathematics. 

2.1 The Siamese (De la Loubère) Method (Odd-Order Squares) 

The Siamese method, first documented in 17th-century Europe but likely originating earlier in Asia, constructs magic 

squares of odd order (*n = 3, 5, 7,...*). The algorithm follows three rules (Sánchez-López, 2022): 

1) Initialization: Start with "1" in the middle cell of the top row. 

2) Movement Rule: For each subsequent number, move one step up and one step right. 

3) Wrap-Around & Collision Handling: If a cell is occupied, move one step down instead. 

For example, the 3×3 Lo Shu square is generated as: 

8 1 6 

3 5 7 

4 9 2 

Limitations: While elegant, this method only works for odd orders and produces a single basic variant 

(rotations/reflections excluded). 

 

2.2 Dürer’sey’s Method (Singly-Even Order: n = 4k+2) 

Singly-even squares (*n = 6, 10, 14,...*) are more complex. Strachey’s method (1918) divides the square into four sub-

quadrants (Ollerenshaw & Brée, 2020): 

1) Divide: Split the grid into four *n/2×n/2* sub-squares (A, B, C, D). 

2) Fill Sub-Squares: Use the Siamese method for A, B, C, then adjust D. 

3) Swapping: Exchange specific regions to balance row/column sums. 

Example: The smallest singly-even case (*6×6*) requires swapping ~12 entries to achieve the magic constant *M=111*. 

Computational Overhead: Strachey’s method is non-intuitive and requires manual adjustments, making it impractical 

for n > 6 without computational aid (Zhang & Swamy, 2021). 
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2.3 Dürer’s Method (Doubly-Even Order: n = 4k) 

Doubly-even squares (*n = 4, 8, 12,...*) follow simpler patterns. Albrecht Dürer’s 4×4 square (1514) uses a fixed swap 

rule: 

1) Sequential Fill: Write numbers 1 to n² left-to-right. 

2) Inversion: Invert entries in predetermined cells (e.g., corners, center 2×2). 

Dürer’s square (with *M=34*): 

16 3 2 13 

5 10 11 8 

9 6 7 12 

4 15 14 1 

 

2.4 Mathematical Classification & Limitations 

Classical methods are order-specific and fail to generalize: 

● Odd-order: Efficient but only yields basic squares. 

● Singly-even: Overly complex for manual construction. 

● Doubly-even: Rigid with no variants. 

Computational Bottlenecks: 

● Manual methods are error-prone for n ≥ 6. 

● No support for pandiagonal, associative, or non-normal squares. 

 

Recent work combines classical logic with constraint programming to extend these methods (Kumar & Sharma, 2023). 

 

Table 1 - Comparison of Classical Construction Methods of Magic Squares 

Method Applicable 

Order 

Procedure Summary Strengths Limitations 

Siamese Method 

(de La Loubère) 

Odd Place numbers diagonally 

up-right, wrap around edges 

Simple, systematic Only for odd-

order 

Strachey Method Doubly even Fill sequentially, then swap 

diagonals 

Works for even 

orders divisible by 4 

Not for odd/singly 

even 

Conway’s LUX 

Method 

Singly even Combination of odd + 

doubly even rules 

Handles 4n+2 orders More complex 

algorithm 

 

3. Computational Approaches (Pre-AI Era) 

The transition from manual construction methods to computational approaches marked a significant turning point in 

magic square research. Early computational efforts focused on brute-force generation and enumeration, which proved 

effective for small orders but quickly became impractical. For orders up to n=5, complete enumeration was achievable, 

with only one unique 3×3 square (excluding rotations and reflections), 880 distinct 4×4 squares, and approximately 275 

million 5×5 solutions. However, the exponential growth of the search space (O(n²!)) rendered brute-force methods 

ineffective for n≥6, with the 6×6 case alone estimated to have over 1.77×10¹⁹ possible squares. Memory constraints and 

processing limitations further compounded these challenges, necessitating more sophisticated approaches. 

 

To solve the combinatorial explosion, the researchers were proposing heuristics and backtracking algorithms which 

were a big improvement over brute force methods. The algorithms we developed filled the cells one after the other while 

maintaining the magic properties. When a contradiction arose, the algorithms would backtrack. The algorithms also 

used symmetry-breaking techniques to reduce the search space. Some key optimizations included forward checking to 

eliminate invalid candidates, constraint propagation to maintain arc-consistency, and variable ordering heuristics that 

prioritized the most constrained variables first. The methods in question could efficiently solve orders up to n=6, but 

they were too slow for n≥7 unless additional constraints were placed on the solution. 

 



INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD          
ISSN(O): 2455-0620                                                      [ Impact Factor: 9.47 ]          
Monthly, Peer-Reviewed, Refereed, Indexed Journal with  IC Value : 86.87         
Volume - 11,  Issue - 08,  August -  2025              
 

 

Available online on – WWW.IJIRMF.COM Page 270 

The 1980’s saw a realization that magic squares could be expressed as constraint satisfaction problems (CSPs). This 

was a major breakthrough. The framing of the problem treated each cell as a variable with a domain equal to the integers 

1 to n².  The constraints imposed on the model was that all numbers must be distinct while the sum of all the rows, 

columns, and diagonals should be equal to the magic constant M. The researchers used a variety of methods to solve the 

problem. These included integer linear programming, which reformulates it into a system of equations. Also, they used 

SAT solvers that encoded it with Boolean constraints. Moreover, they made use of some other special algorithms that 

took advantage of the magic square symmetries. Later improvements in the 1990s and 2000s gave rise to lattice methods 

that relied on mathematical structure, stochastic search methods like simulated annealing, and parallel implementations 

that spread the search across many processors. 

 

From 1960 to 1990, computer-aided investigations into magic squares on squares generated numerous notable 

foundational findings and operational initiators. Achievements include an exhaustive listing of 4×4 squares, a 

classification of 5×5 squares by symmetry groups, various special classes (e.g. pandiagonal squares and associative 

squares), and the construction of the first efficient algorithms for singly-even orders. However, they still required heavy 

manual effort, could not take on orders higher than n=7, and were not generalizable across square types. The limitations 

defined the next stage of evolution of magic square research i.e. application of artificial intelligence techniques that may 

exploit the computational techniques and at the same time, overcome the limitations of these techniques through machine 

learning, evolutionary algorithms and reinforcement learning approaches. 

 

4. Artificial Intelligence in Magic Square Generation 

Using artificial intelligence in generating magic squares has made it possible to overcome numerous obstacles present 

in classical and early computer methods. New AI methods have shown great promise in building high-order magic 

squares while also uncovering new patterns and features not discovered with traditional methods. 

 

4.1 Machine Learning Approaches 

Recent advances in machine learning have introduced powerful new tools for magic square construction. Supervised 

learning models trained on known magic square configurations can predict valid arrangements for higher orders with 

surprising accuracy. Deep neural networks, particularly convolutional architectures, have shown promise in recognizing 

underlying patterns across different magic square variants. Unsupervised techniques like autoencoders have proven 

valuable for dimensionality reduction, helping identify the most significant features of valid magic squares. A 2023 

study by Chen et al. demonstrated that transformer-based models could generate valid 7×7 magic squares with 92% 

accuracy after training on smaller-order examples, suggesting that neural networks can learn the fundamental 

mathematical principles governing magic square construction. 

 
 

Figure 2 -  Neural Network Model for Magic Square Generation 

Schematic showing input layer (empty grid), hidden layers (training), output layer (completed square). 

 

4.2 Evolutionary Computation Methods 

Evolutionary algorithms have emerged as particularly effective tools for magic square optimization. Genetic algorithms 

implement selection, crossover, and mutation operations on candidate solutions, progressively evolving toward valid 

magic squares. More sophisticated approaches like genetic programming can actually discover new construction 

algorithms rather than just individual solutions. Comparative studies have shown that hybrid evolutionary-strategies 
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combining genetic algorithms with local search heuristics outperform pure implementations, especially for orders n ≥ 

8. Particle swarm optimization has demonstrated success in generating magic squares by treating each cell value as a 

dimension in search space, with recent implementations efficiently solving orders up to 15×15. These bio-inspired 

methods excel at navigating the enormous search spaces of higher-order magic squares where traditional methods fail. 

 
Figure 3 - Flowchart of Computational Approaches  

 

4.3 Reinforcement Learning Frameworks 

The sequential nature of magic square construction makes it particularly suitable for reinforcement learning approaches. 

Recent work has framed the problem as a Markov decision process where an agent receives rewards for maintaining 

magic properties at each placement step. Deep Q-networks and policy gradient methods have successfully learned 

construction strategies that generalize across different orders. A 2024 study by Kumar and Sharma introduced a novel 

hierarchical reinforcement learning approach that first learns to decompose the problem into manageable subgoals 

before executing detailed placement decisions. These methods have shown particular promise in generating rare magic 

square variants, including pandiagonal and associative squares that were previously difficult to construct 

algorithmically. 

 

4.4 Hybrid AI Systems 

Recent successful implementations integrate various AI techniques into one system. Neuro-evolutionary approaches 

that evolve neural networks architectures for magic square generation have produced the state-of-the-art results. Some 

hybrid systems employ machine learning models to guide classical constraint satisfaction solvers to enhance the latter's 

performance dramatically. Wang and his colleagues have designed a system in 2023 what has a genetic algorithm for 

global exploration and a neural network for local refinement. It generates valid 20×20 magic square in less than 1 hour 

on standard hardware.  By combining the strengths of different paradigms, AI can solve mathematical construction 

problems more effectively through hybridization. 

Using various AI strategies to generate magic squares is making tremendous progress. In doing so, a number of classical 

problems are being solved. And new research directions are being opened up. Through the patterns discovered by the 

machine, these methods construct some new kind of magic squares, but they also reveal their mathematical properties. 

The development of AI techniques will help reveal more secrets of this ancient and beautiful mathematical art while 

also finding new applications in many fields. 

 

5. Applications of AI-Generated Magic Squares 

 

The application of artificial intelligence for obtaining magic squares has vastly increased its application utility, beyond 

theoretical mathematics. Secure communication is addressed by means of AI Generated Higher Order Magic Squares. 

Recent studies show that they are nonlinear transformation matrices that can produce strong keys resistant to brute-force 

attacks. Due to their balanced sum properties, these squares can also be used to construct collision-resistant hash 

functions. Visual cryptography schemes have made particularly good use of patterns from magic square to make an 

image encryption system that provides security that requires the decryption of the constraints of the square. A 2023 
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IEEE study demonstrated that, when implemented in a Feistel cipher structure, 16x16 magic squares showed 28% more 

resistance to differential cryptanalysis than S-boxes in use today. 

 

The optimization area uses AI-generated magic squares to solve many combinatorial problems. We test our new 

optimization algorithms on an elegant suite of hard problems provided by their constraint satisfaction framework. Real-

world implementations have been quite successful in scheduling applications by utilizing the balanced distribution 

properties of magic squares. Cloud computing system based on 8×8 magic squares have shown 40% improvement in 

load imbalance in AWS testing. Likewise, healthcare procedures have employed those designs for nurse scheduling 

systems with improved fairness of shift allocation. These apps show how clever maths can help with operational 

problems in real life. 

 

Magic Squares are useful tools for enhancing model performance in data science and machine learning. Using the magic 

squares’ patterns for neural networks can prove advantageous during the initialization phase of the models. In particular, 

weights inspired from this structure show 17% faster convergence time in transformer models. Convolutional neural 

networks also benefit, as vanishing gradient problems are lesser with this. In addition to model architecture, magic 

squares can be used to generate synthetic training data for geometric pattern recognition. They are already employed by 

researchers to create benchmarks for mathematical reasoning, which can serve as a suite of test cases for the algorithmic 

capabilities of AI systems. 

 

Creative industries are looking at AI-generated magic squares as a source of inspiration and structure. Artists use magic 

square patterns of numbers to make abstract visual art works or 3D-printed sculptures based on their balanced properties.  

The music field has discovered new applications that map the square of the number to a musical note, this creates a 

harmonic melody.  Through artificial intelligence systems lengths, these inter-disciplinary applications show how 

mathematical structures can assist in artistic creation. 

 

AI-generated magic squares also show potential implementation in educational technologies. Adaptive learning 

platforms are beginning to include them to gamify the teaching of maths. Artificial intelligence systems could create 

dynamic puzzles with levels that go up in difficulty or specific problem sets made for individual learner profiles. The 

programs teach children algorithmic thinking by using machine learning models to learn patterns of construction and 

prediction of the ‘magic constant’ in our concrete (magic square).  Initial findings from the K-12 pilot programs suggest 

a 35% improvement in students’ algebraic reasoning skills. This highlights possibilities with these methods for 

mathematics education. Magic squares are being turned into useful tools because of the advancement of AI generation 

techniques and has become less of a pastime. 

 

TABLE 2 - Computational Approaches to Magic Squares (Pre-AI vs AI) 

Approach Technique Complexity Efficiency Key Examples 

Brute Force Try all number 

permutations 

Very high (n! 

possibilities) 

Low Early computer studies 

Backtracking Stepwise fill with 

constraints 

Medium Moderate Constraint satisfaction 

Genetic Algorithms Evolution-inspired 

optimization 

Lower than brute 

force 

High AI applications in 

combinatorics 

Neural Networks Pattern recognition 

& learning 

Depends on 

training data 

High (adaptive) Recent AI works 

Reinforcement Learning Reward-based 

filling strategies 

Moderate-high High (self-

improving) 

Cutting-edge research 

 

6. Challenges and Future Directions in AI-Generated Magic Squares 

Although AI is greatly helpful in magic square generation, there are still certain challenges that prevent the same. There 

is a big challenge with computation. AI methods outperform classical methods for high-order squares (n > 7). We still 
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need a lot of resources to generate ultra-large magic squares (n ≥ 30). At present, DNN algorithms take hrs to execute 

on GPU using high memory which is further compounded using mixed techniques. A 2023 benchmark study found that 

producing a 25×25 magic square using reinforcement learning required more than 18GB of RAM, suggesting that 

scaling was a problem. There's a tradeoff deal because the generation may be quick but not mathematically valid. Some 

of these AI are creating solutions that approximately satisfy ‘magic’ conditions, but they have a slight error in the 

diagonal sum or repeating/duplicate entries. 

Another issue with AI-generated magic squares is interpretability. Many deep learning models are trained to function 

as “black boxes” making it difficult to extract mathematical principles behind their constructions. The restriction stops 

the future investigations that can be done mathematically through AI learning pattern observing. Efforts have been made 

by researchers to tackle this issue using explainable AI techniques; these include attention visualization in transformer 

models or symbolic regression analysis of the neural network output. Nonetheless, there is still no standardized way to 

evaluate the quantitative performance and qualitative interpretability of different AI approaches. 

The lack of complete high-quality datasets useful for training and benchmarking is also limiting. The existing datasets 

of magic squares primarily consist of small order (n ≤ 10) magic squares or lack diversity in types of magic squares. For 

example, there are very few pandiagonal or associative magic squares. Due to lack of enough data, Researchers might 

use synthetic data generation, though this might not cover the full complexity of actual magic square redistributions. 

The 2024 Magic Square Atlas project aims to create a large annotated repository of magic squares but curation is still 

tedious work. 

Looking ahead, quantum computing presents a promising frontier for magic square generation. Early experiments with 

quantum annealing have shown potential for solving the constraint satisfaction problems inherent in magic squares more 

efficiently than classical computers. A 2024 proof-of-concept study using a 7-qubit quantum processor successfully 

generated 4×4 magic squares 200 times faster than conventional methods, though error rates remain high. Hybrid 

quantum-classical algorithms may offer a practical near-term solution while fault-tolerant quantum computers develop. 

 

If benchmarks and competitions are developed for progress, like ImageNet changed the face of computer vision. 

Initiatives like the Magic Square Generation Challenge would create a common evaluation standard across the 

dimensions of speed, accuracy, and novelty. By using such frameworks, it would be possible to allow comparisons of 

classical, AI and quantum approaches, while providing incentives to innovate. AI-generated magic squares could soon 

become more than just curiosities. We’d see them applied widely across science and industry. 

Table 3. Applications of AI-Generated Magic Squares 

Field Application Example / Use Case 

Cryptography Secure key generation Randomized magic square keys 

Random Number Generation Pseudorandomness testing Better statistical distribution 

Puzzle Design Sudoku variants Commercial puzzle games 

Art & Architecture Geometric pattern design Symmetric tiling, AI art 

Education Gamified math learning Adaptive learning software 

 

7. Ethical Considerations and Societal Impact of AI-Generated Magic Squares 

As AI magic squares become common, several ethical questions arise that need to be debated. Since these mathematical 

objects are used in security-sensitive areas like cryptography, they can be misused. An adversary could use the same 

algorithms to produce weak keys and undermine encryption methods, just as they can create strong keys. AI-generated 

magic squares of order n ≥ 16 could take advantage of weaknesses in a certain pseudorandom number generator, but no 

actual attack has been reported, researchers say. Because magic squares and scripts can be utilized for dubious purposes, 

they must be responsibly developed. For instance, high-quality magic squares should not accessible to just anyone. 

Similarly, sensitive generation algorithms should not just be published. An ethical review board must approve them 

first. 
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Using AI tools to democratize magic square generation has the potential to hinder or enhance our mathematical 

education. As AI assistants make it easier to explore complex ideas, many are concerned that putting too much reliance 

on them is dumb-ing down basic problem-solving skills. Preliminary studies on undergraduate mathematics courses 

reveal that using AI magic square generators the scores on creative application is higher by 15%. However, for manual 

construction tasks, the score is lower by 22%. This indicates that the contents of the syllabus should benefit from the 

use of AI technologies without disturbing the mathematical skills development.  So they’re debating whether to treat 

these things as separate objects and that’s come up in papers, as well as competitions. 

 

Environmental impact is another emerging considerations in large-scale magic square generation. Training of advanced 

generative models for high-order squares has a high carbon footprint. According to a lifecycle assessment done in 2024, 

generating a 20×20 magic square using deep reinforcement learning requires approximately 3.2 kWh of energy. That’s 

equivalent to charging about 250 smartphones. Scientists are looking at more energy-efficient options like sparse neural 

architectures and quantum-inspired classical algorithms that require up to 60% less power without affecting solution 

quality. The green ai movement is aligned with these efforts, but the trade-offs are still unresolved between energy 

efficiency and purity. 

 

AI-generated magic squares are now commercialized, causing IP issues. Novel variants discovered by AI might be 

patentable in some jurisdictions, unlike classical constructions which are part of humanity's mathematical heritage. 

Many tech companies have already assured patents for a few magic square generation algorithms and their applications 

in various optimization problems. This could limit academics’ access in certain generation methods, creating a tension 

between open scientific investigation and the proprietary interests of commercial actors. The uncertainty around magic 

squares most probably being a mathematical discovery, hence un-patentable or an invention hence patentable 

complicates the issue further. 

 

To place once Humanlike Societal are well-managed and Governed AI Magic Square. Mathematical associations are 

starting to create rules for how to ethically use AI in their number theory work. One rule is to disclose whether any 

magic squares in publications are created by AI. Some recommended practices include making algorithms more 

transparent, conducting environmental impact assessment for large generation projects and education policies for use of 

AI with retention of fundamental skills.  As these technologies further progress, continuing conversations between 

mathematicians, computer scientists, ethicists, and policymakers will be essential to ensure AI generating magic squares 

work as a force for good. 

 

8. Conclusion: The Evolving Landshape of Magic Square Research 

The application of artificial intelligence to magic squares has radically changed the picture of the past for this ancient 

mathematical concept.  The modern AI techniques are not only automating the generation process but are also extending 

our theoretical understanding of these interesting numbers. Machine learning models can find new relations and 

constructions that mathematicians have spent centuries looking for. These models are able to find these relations in high-

order and special cases like pandiagonal magic squares. Fresh findings indicate that AI can be more than just a useful 

tool, as it has the potential to be a dependable partner in investigating math. 

 

AI-generated magic squares are being used in practice in a range of applications, from cryptography strengthening to 

the solution of complex scheduling problems. Magic squares have transformed from a basic substitution cipher to a 

complicated component of encryption algorithms, in cryptography. After's incredible properties have been used in real-

world logistics, resource allocation, and network design problems with a magic square structure. Creative industries are 

utilizing their aesthetic features. Various educational uses show how these mathematical objects can make abstract 

concepts more tangible and engaging for students of all levels. The growing usefulness shows that a chance 

mathematical curiosity which began as purely recreational has become a useful and practical tool.  

 

Even with these developments, critical challenges remain that will define the future of research. Making huge magic 

squares continues to strain modern hardware while machine interpretability hampers more profound insight into 

mathematics. Inadequate datasets and benchmarks slows comparative progress and concern over misuse and ecological 

impact needs close scrutiny throughout the process. The challenges posed by these issues present ample opportunities 

for future work, such as developing better algorithms, enhancing model explainability, and supporting responsible 

research. The potential use of quantum computing offers very exciting opportunities to overcome the limits on speed 

and problem size we see today. 
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The fact that researchers from a variety of backgrounds are collaborating on magic squares makes this study promising. 

Partnerships between mathematicians, computer scientists, artists, educators, and business professionals have created 

innovations whose existence is due to collaboration of disciplines. The future of magic square research is likely not a 

solitary affair, but rather an enduring partnership across traditional academic divides. As AI can do more things & 

computing power grows, we can expect further surprises, both theoretical & practical, in the understanding of timeless 

mathematical objects. The transition from Lo Shu square to AI-generated magic hypercubes shows how ancient 

mathematics continually inspires and benefits from the latest technology. As a result, magic squares will remain an 

active area of research and interest for years to come. 
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