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1. INTRODUCTION 

The Bin Packing Problem (BPP) is a well-established optimization challenge focused on minimizing the number of 

containers, or bins, required to accommodate a collection of items, each with a specific size or weight, without exceeding 

the capacity of any single bin [1]. The primary goal is to achieve maximum space utilization while ensuring all items 

are packed. Despite its seemingly straightforward nature, the BPP is classified as an NP-hard problem, indicating that 

finding an optimal solution becomes computationally demanding as the number of items increases. 

In many practical scenarios, the simple capacity constraint is insufficient. Additional restrictions often dictate that 

certain items must be placed together in the same bin. These are known as Colocation Constraints [2]. The necessity for 
these constraints arises from various factors, including the functional relationship between items, safety regulations that 

might prohibit the mixing of certain materials, or operational efficiencies gained by keeping related items together [3]. 

For instance, in logistics, items belonging to the same customer order might need to be shipped together, or in 

manufacturing, components required for a single assembly might need to be kitted. 
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Considering colocation constraints significantly complicates the standard BPP, transforming it into a more intricate 

optimization problem where the interdependencies between items play a crucial role [4]. This survey aims to provide a 

comprehensive overview of the diverse applications of bin packing with colocation constraints in real-world settings. It 

will begin by establishing the fundamental definitions of the BPP and colocation constraints. Following this, the report 

will explore specific applications across various industries, including logistics, manufacturing, cloud computing, and 

resource allocation. The benefits and challenges associated with implementing such constrained bin packing solutions 

will be analyzed, and a review of the different algorithms and approaches used to tackle these problems will be provided. 

Furthermore, the report will highlight case studies of successful implementations and conclude by discussing key trends 

and future directions in this evolving field. 

2. BENEFITS OF INTEGRATING COLOCATION CONSTRAINTS WITH BIN PACKING 

 

Integrating colocation constraints with bin packing offers several significant benefits across various applications. By 

grouping related items together, operational efficiency can be substantially improved, leading to faster and more 

streamlined processes in areas like shipping, assembly, picking, and task execution. This enhanced efficiency often 

translates directly into reduced costs. Optimizing the packing process minimizes the number of bins or resources 

required, resulting in savings in transportation, storage, material waste, and energy consumption [5]. 

Furthermore, colocation can enable better utilization of available resources. In cloud computing, for example, placing 

VMs that share similar operating systems or libraries on the same physical server allows for memory sharing, which 

reduces overall resource consumption [6]. Similarly, in resource allocation, colocating interdependent tasks on the same 

processor can minimize communication overhead, leading to more efficient use of processing power. Enhanced 

performance is another key advantage, particularly in cloud computing and resource allocation, where colocating 

interdependent components can significantly lower latency and improve application responsiveness. 

In industries dealing with physical goods, incorporating colocation constraints can lead to increased safety and 

regulatory compliance. By ensuring that incompatible or hazardous items are segregated, companies can adhere to safety 

regulations and minimize the risk of accidents. Moreover, in e-commerce and logistics, grouping all items of a 

customer's order together for shipping improves order fulfillment accuracy and enhances customer satisfaction by 

ensuring all items arrive together. Finally, in manufacturing processes like material cutting, strategically colocating 

patterns on raw materials can significantly reduce the amount of waste, contributing to more sustainable and cost-

effective production [7]. 

 

3. CHALLENGES AND COMPLEXITIES IN REAL-WORLD IMPLEMENTATION 

 

Despite the numerous benefits, implementing bin packing with colocation constraints in real-world scenarios presents 

several challenges and complexities. A primary hurdle is the computational complexity inherent in the Bin Packing 

Problem itself, which is NP-hard. Adding colocation constraints further intensifies the difficulty of finding optimal 

solutions, especially as the scale of the problem grows.  

Real-world applications often involve multiple colocation constraints that might conflict with each other or with the 

overarching objective of minimizing the number of bins used. For instance, there might be a requirement to keep certain 

items together while simultaneously needing to segregate others, making it challenging to satisfy all conditions 

simultaneously. Furthermore, many practical scenarios operate in dynamic environments where items arrive 

sequentially, as in online bin packing problems. Incorporating colocation constraints in such online settings requires 

making immediate placement decisions without future knowledge, which can often lead to suboptimal packing 

arrangements. 

Dealing with items that have complex shapes and exist in two or three dimensions, coupled with colocation 

requirements, introduces another layer of complexity compared to the simpler one-dimensional case. Accurately 

defining and modeling real-world dependencies and relationships between items into formal colocation constraints that 
can be effectively used by optimization algorithms can also be a significant challenge. Finally, in some applications, 

such as cloud computing, the primary goal of maximizing packing density might clash with other important objectives 

like ensuring workload isolation, maintaining fault tolerance, or guaranteeing specific performance levels for colocated 

resources [8]. 
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4. ALGORITHMS AND APPROACHES FOR SOLVING BIN PACKING WITH COLOCATION 

 

Various algorithms and approaches have been developed to address the challenges of bin packing problems with 

colocation constraints. Heuristic algorithms, such as First Fit (FF) and its variant First Fit Decreasing (FFD), are 

commonly used due to their simplicity and speed. These algorithms place each item into the first available bin with 

sufficient capacity, with FFD first sorting the items by size in descending order. They can be adapted to handle 

colocation by checking if placing an item in a bin would violate any defined colocation constraints before proceeding 

with the placement. Similarly, Best Fit (BF) and Best Fit Decreasing (BFD) algorithms, which place items in the bin 

with the least remaining space, can also be modified to respect colocation requirements. Next Fit (NF) and Next-k-Fit 

(NkF) are online heuristics that keep a limited number of bins open, but they are less directly applicable to complex 

colocation constraints that might require considering multiple bins simultaneously. For two-dimensional packing 

problems with grouping requirements, shelf algorithms and bottom-left heuristics can be extended to prioritize the 

placement of colocated items together [9]. 

Metaheuristic algorithms offer another class of solutions, particularly for complex problems with various constraints. 

Genetic Algorithms (GA) are evolutionary algorithms that can explore a broad solution space and effectively handle 

intricate constraints like colocation [10]. Simulated Annealing (SA) is a probabilistic approach that can escape local 

optima to find good solutions for constrained optimization problems.  Particle Swarm Optimization (PSO) is a 

population-based technique that can be adapted for bin packing with colocation constraints [11], and Variable 

Neighborhood Search (VNS) systematically explores different solution neighborhoods to improve results [4]. 

For smaller instances where finding the absolute best solution is critical, exact methods such as Integer Linear 

Programming (ILP) and Constraint Programming (CP) can be employed. ILP involves formulating the problem as a 

mathematical program that can be solved using specialized solvers [3].CP is a declarative approach that uses constraints 

to model the problem and utilizes specialized constraint propagation techniques to find solutions [12]. 

Finally, learning-based approaches are emerging as a promising direction. Machine Learning (ML) techniques can be 

used to predict optimal packing strategies or to guide heuristic algorithms, potentially improving performance for 

problems with colocation constraints [13]. Neural Networks are also being explored to learn patterns from bin packing 

problems and generate efficient solutions [14]. 

 

5. REAL LIFE APPLICATIONS 

 

A. Distributed Storage Systems 

Both Hadoop Distributed File System (HDFS) and Google File System (GFS) are designed to handle large-scale 

distributed data storage systems, and while they share some similarities, their approaches to storing data blocks 

efficiently and optimizing access speed can differ. Let's break down how these systems deal with data placement and 

access optimization: 

• Storing Related Data Blocks Together 

Both HDFS and GFS aim to improve access speed by storing related data blocks together, which can reduce the need 

for cross-node communication and increase data locality. This can improve the performance of data retrieval operations, 

especially when multiple pieces of related data are required together. 

▪ HDFS: In HDFS, data is stored in blocks (typically 128MB by default), and each block is replicated across multiple 

nodes for fault tolerance. While HDFS doesn't specifically group related data blocks together, the way blocks are 

distributed across nodes can allow for efficient retrieval of related data if that data is within the same block or on 

nearby nodes. 
▪ GFS: GFS takes a similar approach by dividing files into chunks, each typically 64MB in size. The system is 

designed to store chunks in a distributed manner across multiple servers. In some cases, related chunks (e.g., those 

that are part of the same file) are placed on nodes near each other to improve access speed, but this is not always 

strictly enforced. 

Both systems rely on data locality to ensure that related blocks or chunks are placed together, though they may not 

guarantee perfect co-location. 
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• Optimizing Storage for Frequently Accessed (Hot) and Less Accessed (Cold) Data 

The management of hot and cold data is a key design feature for improving overall system performance and cost-

efficiency. 

▪ HDFS:  

Hot data: In HDFS, hot data (frequently accessed data) can be stored on faster disks (e.g., SSDs), while cold data 

(infrequently accessed data) can be stored on slower, cheaper storage (e.g., HDDs). This is often done through 

custom configurations or the use of HDFS tiered storage. In this setup, users can define different storage types for 

data based on access patterns, allowing the system to store frequently accessed data in higher-speed storage while 

relegating less frequently accessed data to slower, more cost-effective storage. 

Cold data: HDFS does not automatically manage hot and cold data placement but can benefit from application-

level management or tools like the Hadoop Archive (HAR) for storing older, less frequently accessed data in a 

more compressed, optimized form. 

▪ GFS:  

Hot data: Google File System typically places hot data on high-performance disks and memory caches in its 

architecture. GFS doesn't directly separate hot and cold data in the way HDFS does, but it leverages replication to 

ensure that frequently accessed data can be served quickly from multiple replicas across different nodes. 

Cold data: Similarly, for cold data, GFS relies on its replication strategy to ensure that all data, whether hot or 

cold, is still available and fault-tolerant. In GFS, though, it’s generally less concerned with explicitly optimizing 

cold data storage as much as HDFS. 

Bin Packing with Colocation 

The idea of bin packing and colocation is generally about minimizing data transfer times by placing related data closer 

together. However, it’s more of an application-level optimization than a core feature of both HDFS and GFS. 

• HDFS: 

o While HDFS does not explicitly implement bin packing, it does aim to minimize data transfer by keeping 

related blocks on the same or nearby nodes. This minimizes the need for data to be transferred over the 

network when access patterns involve retrieving related blocks. 

o Colocation is often achieved through the HDFS rack awareness feature, where blocks of a file are placed 

on different racks to avoid single points of failure but still attempt to maintain proximity to improve data 

access speed. 

• GFS: 

o Colocation and bin packing are handled in GFS through its chunk placement policy. Chunks are 

replicated across different servers to improve fault tolerance, but GFS also attempts to keep related chunks 

close to each other in the system. This is especially beneficial for large files or files with sequential access 

patterns. 

o GFS doesn’t strictly use bin packing algorithms to optimize the placement of chunks in a way that reduces 

data transfer, but its distributed architecture ensures that data placement is done with the intention of 

minimizing read/write latencies. 

Key Differences: 
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• Hot and Cold Data Handling: HDFS has a more flexible mechanism to implement tiered storage and separate cold 

and hot data, while GFS does not explicitly optimize for this, relying instead on replication and fault tolerance 

strategies. 

• Co-location of Data: Both systems aim for data locality but in different ways. HDFS uses rack awareness and 

replication for this, while GFS focuses more on chunk placement strategies. 

• File and Block Management: HDFS tends to treat blocks as the fundamental unit of storage, while GFS focuses 

on chunks of data, typically much larger in size, with replication strategies to enhance data availability. 

B. Database Storage & Sharding  

Bin packing with colocation is a powerful technique used in database storage and sharding to optimize data distribution 

and improve performance. In this context, bin packing involves distributing data (treated as "items") across a limited 

number of shards or servers ("bins"), while colocation ensures that related or frequently accessed records are stored 

together. 

Key Applications: 

a) Efficient Data Distribution: 

o Bin packing helps evenly distribute data across shards, preventing any single server from becoming a 

bottleneck. 

o It takes into account factors like data size and access frequency to balance load. 

b) Improved Query Performance: 

o Colocating related data (e.g., a user and their related posts or transactions) minimizes the need for expensive 

cross-shard joins. 

o This reduces query latency and improves throughput. 

c) Workload-Aware Sharding: 

o Bin packing strategies can consider read/write patterns, ensuring that frequently accessed data is placed 

optimally to reduce load on hot shards. 

d) Resharding and Rebalancing: 

o During data growth or changes in access patterns, bin packing helps determine how to redistribute data with 

minimal movement and disruption. 

o It maintains the colocation of related data to preserve query efficiency. 

e) Resource Optimization in Multi-Tenant Systems: 

o In cloud or SaaS platforms, tenants with similar workloads or shared dependencies can be colocated to 

optimize storage and resource usage. 

This approach is especially beneficial in large-scale distributed databases like MongoDB, Cassandra, and HBase, 

where performance, scalability, and cost efficiency are critical. Bin packing with colocation leads to smarter data 

placement, resulting in better utilization of infrastructure and faster data access. 

C. Cloud Storage Optimization 

Data Deduplication and Chunk Placement 

In cloud storage, especially with systems like Amazon S3 or Google Cloud Storage, deduplication is used to avoid 

storing multiple copies of identical data [20]. When similar data chunks are identified, bin packing with colocation can 

be applied to: 

• Place related chunks together to minimize lookup latency. 

• Optimize disk head movement in HDD-based systems. 

• Reduce the overhead of redundant storage by colocating frequently accessed chunks. 

Example: In deduplicated backup storage, colocating related backups helps speed up restore operations. 



INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD          
ISSN(O): 2455-0620                                                      [ Impact Factor: 9.47 ]          
Monthly, Peer-Reviewed, Refereed, Indexed Journal with  IC Value : 86.87         
Volume - 11,  Issue - 09,  September -  2025              
 

 

Available online on – WWW.IJIRMF.COM Page 45 

Geo-Distributed Storage Replication 

Cloud providers replicate data across geographically distributed data centers to ensure availability and compliance 

[16]. Here, bin packing with colocation is used to: 

• Ensure that related data units (e.g., database shards or log files) are replicated together across selected zones to 

maintain data consistency. 

• At the same time, enforce anti-colocation for fault tolerance (e.g., not placing all replicas in the same power domain 

or region). 

Example: When syncing S3 buckets across multiple AWS regions, related files may be colocated based on user access 

patterns while ensuring compliance with disaster recovery policies. 

D. Multi-Tenant Cloud Storage 

In multi-tenant environments [21], cloud providers must serve multiple customers from shared infrastructure. Bin 

packing with colocation helps by: 

• Assigning tenants with similar access patterns to the same physical storage (e.g., colocating logs of services that 

interact). 

• Enforcing anti-colocation to isolate sensitive data and meet security compliance (e.g., GDPR, HIPAA). 

Example: Two business units of the same customer may request their data be stored together to optimize analytics. 

Benefits of Using Bin Packing with Colocation in Cloud Storage 

Benefit Description 

Improved Performance Faster access to colocated, related data blocks. 

Reduced Latency Minimizes network hops when related data is together. 

Lower Costs Fewer active storage nodes and optimized energy usage. 

Higher Reliability Smart anti-colocation of redundant data enhances fault tolerance. 

Compliance & Security Helps enforce regulatory constraints and tenant separation. 

Technical Challenges 

• Scalability: Managing colocations across petabytes of data requires distributed algorithms. 

• Dynamic Workloads: Cloud environments are constantly changing, requiring frequent re-evaluation. 

• Balancing Trade-offs: Between colocating for performance vs. distributing for fault tolerance. 

• Complex Constraints: Including bandwidth, latency, security, and SLAs. 

E. Data Center Energy Management  

The application of bin packing with colocation in Data Center Energy Management focuses on optimizing the placement 

and operation of IT equipment (servers, storage, network devices) and workloads within the data center to minimize 

energy consumption while maintaining performance and reliability [23]. 

Bin Packing for Server Consolidation: 

• Concept: Physical servers in a data center can be viewed as "bins" with a certain capacity (CPU, RAM, storage, 

power). Virtual Machines (VMs) or containers, representing workloads, are the "items" to be packed into these 

bins.    
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• Goal: The primary goal is to consolidate workloads onto a minimum number of physical servers to reduce the 

number of active but underutilized machines. Idle or low-utilized servers consume significant power without 

contributing proportionally to the computing output.    

• Algorithms: Various bin packing algorithms (First-Fit, Best-Fit, Worst-Fit, etc.) are used to determine the most 

efficient placement of VMs onto physical servers based on their resource requirements.    

• Energy Savings: By maximizing server utilization, fewer physical machines need to be powered on and cooled, 

leading to substantial energy savings in both IT equipment power and cooling infrastructure. 

Detailed Applications and Benefits: 

Optimized Server Consolidation (Bin Packing): 

Reducing Idle Power: Underutilized servers consume a significant baseline power even when doing minimal work. 

Bin packing algorithms aim to maximize the utilization of active servers, allowing for a greater number of idle 

servers to be powered down or repurposed, leading to direct energy savings. 

Right-Sizing Infrastructure: By understanding the resource demands of workloads and efficiently packing them, 

data centers can potentially avoid over-provisioning hardware, thus reducing upfront capital expenditure and the 

ongoing energy costs associated with unnecessary infrastructure. 

Dynamic Resource Management: Orchestration platforms can use bin packing principles to dynamically adjust 

workload placement based on real-time resource utilization. When utilization on a server drops below a certain 

threshold, workloads can be migrated to more densely packed servers, freeing up the underutilized server for power-

down. 

Strategic Workload Colocation for Energy Savings: 

Complementary Resource Utilization:  

CPU-intensive vs. Memory-intensive: Placing a VM that heavily utilizes the CPU alongside one that is primarily 

memory-bound on the same physical server can lead to higher overall server utilization without hitting the limits of 

either resource. This reduces the need for additional servers. 

Peak Load Scheduling: If different applications have peak usage times at different points in the day or week, 

colocating them on the same hardware can smooth out the overall resource demand, preventing the need to provision 

for the sum of their peak demands. 

Network Traffic Optimization:  

High-Communication Workloads: Colocating VMs or containers that communicate frequently on the same 

physical server or within the same rack/row can reduce network hops and latency. This can lead to lower energy 

consumption in network devices (switches, routers) and potentially faster application performance, indirectly 

improving energy efficiency per unit of work. 

Data Locality: Placing compute workloads close to the data they access frequently minimizes data transfer over 

the network, reducing network energy consumption and improving application responsiveness. 

Thermal Management:  

Heat Density Considerations: While not always intuitive as "colocation" of workloads, understanding the heat 

dissipation profiles of the underlying hardware is crucial. Placing high-power-density servers in areas with more 

efficient cooling or ensuring a balanced heat load across the data center can optimize cooling system performance 

and reduce energy spent on cooling. 
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Cold Aisle/Hot Aisle Arrangement: This physical colocation of equipment is fundamental for efficient cooling. 

Servers are arranged to intake cool air from the cold aisles and exhaust hot air into the hot aisles, preventing mixing 

and improving cooling effectiveness. 

Power Distribution Efficiency:  

Load Balancing on Power Circuits: Distributing workloads across different power circuits and power distribution 

units (PDUs) can help avoid overloading specific circuits and improve the overall efficiency of the power 

distribution system. While not direct workload colocation, it's a form of resource "packing" at the power 

infrastructure level. 

Challenges and Considerations: 

• Complexity of Real-time Monitoring and Decision Making: Accurately monitoring resource utilization, network 

traffic, and thermal conditions in real-time and making optimal placement decisions requires sophisticated 

management tools and potentially AI/ML algorithms. 

• Workload Dynamics: Workload demands can fluctuate significantly, making static placement strategies 

ineffective. Dynamic workload migration based on real-time conditions is crucial but adds complexity. 

• Performance Isolation: While colocation can improve resource utilization, it's essential to ensure that colocated 

workloads do not negatively impact each other's performance due to resource contention (the "noisy neighbor" 

problem). Resource quotas and quality-of-service (QoS) mechanisms are necessary. 

• Data Center Physical Constraints: Physical layout, power availability, and cooling capacity of different zones 

within the data center can impose constraints on where equipment and workloads can be placed. 

• Security and Compliance: In some cases, security or compliance requirements might dictate that certain workloads 

must be physically or logically isolated, limiting colocation opportunities. 

Tools and Technologies: 

• Data Center Infrastructure Management (DCIM) Software: Provides visibility into resource utilization, power 

consumption, and environmental conditions, enabling informed placement decisions. 

• Workload Orchestration Platforms (e.g., Kubernetes, VMware vSphere): Offer features for resource 

scheduling and management, often incorporating bin packing algorithms and allowing for affinity/anti-affinity rules 

to influence colocation. 

• Energy Management Software: Specialized tools can analyze energy consumption patterns and recommend 

optimization strategies, including workload placement adjustments. 

• AI/ML-powered Optimization Engines: Can learn from historical data and predict future resource needs to 

proactively optimize workload placement for energy efficiency. 

In essence, applying bin packing with colocation in data center energy management is a multi-faceted approach that 

involves intelligently placing and managing IT resources and workloads to minimize energy consumption across the 

entire data center infrastructure. It requires a holistic view of resource utilization, network traffic, thermal characteristics, 

and power distribution, along with sophisticated tools and dynamic management strategies. 

6. FUTURE TRENDS AND RESEARCH DIRECTIONS 

The field of bin packing with colocation constraints continues to evolve, with several key trends and research directions 

shaping its future. The integration of advanced technologies like the Internet of Things (IoT) promises to provide real-
time data on item characteristics and bin availability, enabling more dynamic and responsive packing strategies. 

Furthermore, the increasing power of Artificial Intelligence (AI) and Machine Learning (ML) is being leveraged to 

develop more adaptive and efficient algorithms that can learn optimal packing patterns and handle complex colocation 

scenarios [26]. 

There is a growing interest in multi-objective optimization, where bin packing problems with colocation constraints are 

addressed while simultaneously considering multiple goals, such as minimizing the number of bins used, balancing the 
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load within bins, and accounting for other practical factors like item stability or fragility.  The need for more efficient 

online algorithms is also becoming increasingly important for real-time applications where items arrive dynamically 

and packing decisions must be made on the fly, all while respecting colocation requirements. 

Hybrid approaches that combine the strengths of different algorithmic techniques, such as integrating heuristics with 

metaheuristics or combining exact methods with problem decomposition strategies, are also gaining traction for tackling 

increasingly complex constrained bin packing problems. The potential of quantum computing to address the inherent 

computational complexity of these problems is also being explored, which could lead to significant breakthroughs in 

solving large-scale instances with intricate colocation constraints [27]. 

Sustainability and environmental considerations are also driving future trends, with an increasing focus on using bin 

packing with colocation to optimize resource utilization and minimize waste in logistics and manufacturing, contributing 

to more environmentally responsible practices. Finally, there is an emerging interest in developing bin packing 

algorithms that can consider individual customer preferences or specific product requirements when applying colocation 

constraints, leading to more personalized and customized packing solutions. 

7. CONCLUSION 

The integration of colocation constraints into the Bin Packing Problem represents a significant advancement in 

addressing real-world optimization challenges across a multitude of industries. By considering the necessary 

relationships and dependencies between items, this approach allows for the development of packing solutions that are 

not only efficient in terms of space and resource utilization but also aligned with operational requirements, safety 

regulations, and customer needs. The diverse applications explored in this report, spanning logistics, manufacturing, 

cloud computing, and resource allocation, underscore the versatility and importance of this optimization technique. 

While the computational complexity and the presence of conflicting constraints pose ongoing challenges, the benefits 

of improved efficiency, reduced costs, better resource utilization, enhanced performance, and increased safety continue 

to drive research and innovation in this field. The development of sophisticated heuristic, metaheuristic, exact, and 

learning-based algorithms, coupled with the exploration of emerging technologies like quantum computing, promises 

to yield even more robust and scalable solutions for increasingly complex scenarios. As industries continue to seek 

optimized processes and sustainable practices, bin packing with colocation constraints will undoubtedly remain a 

powerful and essential tool for achieving these goals. 
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