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1. INTRODUCTION:  

 Now a days, the wireless communication and its services has led to an increasing demand for faster and more 

reliable connections.Traditional spectrum allocation often leads to inefficient use of available capacity. The spectrum 

allocation techniques rely on fixed assignments, often result in underutilization of available resources and increased 

interference. This work looks into whether reinforcement learning-based solutions can adapt better to real-time 

conditions and improve spectrum management. 

1.1 Motivation 

The primary motivation behind this study is to explore the applicability of Reinforcement Learning algorithms in 

optimizing spectrum allocation, thereby improving spectrum efficiency and reducing interference in wireless 

communication networks. By implementing  RL, we aim to develop adaptive strategies that can dynamically adjust to 

changing network conditions and user demands. 

2. Background 

2.1 Spectrum Allocation in Wireless Communication 

Wireless communication is the process of transmission of information without any physical media, It make use of 

electromagnetic waves to transmit data. These electromagnetic waves involves radio waves, microwaves, satellite used 

to transmit data between devices. Main advantages of wireless communication involve mobility, easy installation , 

scalability etc. 

Wireless communication emerged and now in state to be used in 5G networks, IOT. Dynamic spectrum allocation helps 

to dynamically allocate spectrum and improve efficiency. Spectrum management involves allocation of spectrum by 

allocating and reallocation spectrum efficiently. Effective spectrum utilization play a vital role in Wireless system 

require careful management planning and assignment of operation of wireless network to ensure the spectrum and 

efficiently meet the need of users. 

Spectrum allocation[3] involves distributing available frequency bands among various users or devices to ensure 

efficient communication with minimal interference. Traditional methods, such as fixed allocation, fail to adapt to 
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varying network conditions, leading to inefficient use of spectrum resources. Dynamic spectrum allocation, facilitated 

by ML, can adaptively allocate spectrum based on current network conditions and user requirements. 

 In this paper we will make use of machine learning techniques for allocation of spectrum efficiently to users. 

 

2.2 Reinforcement Learning 

Machine learning helps in optimizing resources allocation in wireless network. Reinforcement learning[1] is a type of 

machine learning where an agent learns to make decisions by interacting with an environment. It can be used for 

spectrum allocation by receiving feedback in the form of rewards or penalties based on its actions from the agents by 

allowing it to learn optimal policy to maximize rewards. 

Reinforcement learningalgorithms [1] like Q learning, Deep Q Learning, Policy gradient method is used in this paper 

for efficient spectrum allocation. A comparison with supervised learning is also done in this paper. 

 

2.2.1 Q-Learning 

Q-learning is a model-free RL algorithm that enables an agent to learn optimal actions by interacting with its 

environment. The algorithm updates a Q-table, which estimates the utility of taking a specific action in a given state, 

using the Bellman update rule. In wireless communication, the state might represent the current channel usage and 

signal quality, while the action could involve choosing a channel or modifying transmission parameters. The reward 

reflects successful transmission outcomes, encouraging decisions that reduce interference and boost efficiency.The 

make use of  

State space: State space represent channel occupancy and the respective signal to noise ratio 

Action space: It specifies the choices available to each state space agents. Action space involves selecting specific 

channel for transmission, adjusting transmission, power level decision to switch channels. 

Rewards :Rewards are designed to evaluate the successful transmission. It help us to whether had a maximum 

successful transmission ,minimum interference and balance power efficiency and signal quality depend on the value of 

reward. 

Rewards play a prominent role in evaluating spectrum efficiency and interference, 

The algorithm iteratively update value in Q value table which estimate the expected utility of taking action against the 

state space .The rule is given by Q-values using the Bellman equation:  

Q(s,a)=Q(s,a)+α[r+γmaxQ(s′,a′)−Q(s,a)] 

s-> current statea-> action takenr-> immediate received reward 

s ’->next stateα->learning stateγ->discount factor 

 

By initialization, training and policy extraction the selection of action with highest Q value can be done. 

 

2.2.2 Deep Q-Learning (DQL) 

DQL improves upon basic Q-learning by using deep neural networks to approximate the Q-value function, which is 

useful for high-dimensional environments like wireless systems with many users and channels. It employs a replay 

buffer to store experiences and a separate target network to stabilize learning. DQL is effective in handling complex 

state-action mappings, making it suitable for dynamic spectrum allocation tasks.Here also to implement algorithm it 

make use of state space generation ,action space and generate reward. 

 

Problem formulation 

• State Representation: Use a neural network to encode the states. The input could be a vector 

representing the current allocation and Signal to Noise Ratios of users. 

• Action Space: Similar to Q-learning, actions are the allocation of channels to users. 

• Reward Function: Design a reward function as described in Q-learning. 

 

Implementation Steps: 

1. Neural Network Architecture: Use a multi-layer perceptron (MLP) or convolutional neural network 

(CNN) to approximate the Q-values. 

2. Experience Replay: Store experiences (s,a,r,s′)(s, a, r, s')(s,a,r,s′) in a replay buffer and sample mini-

batches to break the correlation between consecutive experiences. 
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3. Target Network: Use a target network to stabilize training by slowly updating the target network weights 

to follow the primary network weights. 

4. Training: Update the neural network weights by minimizing the loss: 

L=(γ+ max(Q(s′,a′;θ′)−Q(s,a;θ))2     

hereθandθ′ are the parameters of the primary and target networks, respectively. 

 

2.2.3 Policy Gradient Methods 

Unlike Q-based methods, policy gradient algorithms optimize the policy directly by adjusting parameters based on 

reward gradients. In this paper, we apply Proximal Policy Optimization (PPO), a robust approach that ensures stable 

updates during training. PPO uses clipped objective functions to prevent drastic policy changes, making it suitable for 

wireless environments where stability is crucial. 

 

Problem Formulation 

1. State Space: The state s represents the current conditions of the wireless network, which may include the 

spectrum usage, channel conditions, user demands, and interference levels. 

2. Action Space: The actions space  corresponds to the possible spectrum allocation decisions, such as assigning 

specific frequency bands to different users or devices. 

3. Reward Function: The reward r is designed to reflect the objectives of the spectrum allocation. It could 

include metrics such as spectrum efficiency, user satisfaction, interference levels, and overall network throughput. 

 

Policy Gradient Approach[1][6] 

1. Policy Parameterization: The policy πθ(a∣s) is parameterized by θ, which could be the weights of a 

neural network. The policy determines the probability of selecting a particular action a given to the  state 

s. 

2. Objective: The goal is to maximize the expected cumulative reward, denoted as J(θ): 

J(θ)=Eτ∼πθ[t=0∑Trt] 

3. Gradient Estimation: The gradient of the expected reward with respect to the policy parameters is 

estimated using samples from the policy. The REINFORCE algorithm can be used for this purpose: 

J(θ)=Eτ∼πθ[R(τ)] 

4. Policy Update: The policy parameters are updated in the direction of the gradient to improve the policy: 

θ←θ+α⋅∇θJ(θ)where α is the learning rate. 

 

Policy Gradient Methods optimize the policy directly by computing the gradient of the expected reward with respect 

to the policy parameters.  

In this paper we use Proximal Policy Optimization (PPO) which is an advanced policy gradient method that improves 

upon traditional approaches by ensuring stable and reliable training. It does this by incorporating mechanisms that 

prevent the policy from changing too drastically, which can lead to training instability.Proximal Policy Optimization 

(PPO) is an advanced policy gradient method that aims to improve stability and reliability in training. It strikes a 

balance between performance improvement and policy stability by introducing a new objective function and clipping 

mechanisms. In this paper PPO is used for evaluation purpose. 

 

2.2.4 Random allocation approach 

In this approach in spectrum allocation refers to a strategy where frequency bands are assigned to users or devices in a 

stochastic manner rather than using a deterministic or optimization-based approach. This method can be effective in 

certain scenarios, especially in dynamic environments where user demand and channel conditions are highly variable. 

Here randomly allocate channels to users 

 

2.3 Rewards 

As discussed in previous algorithms ,Reward is a factor for effectively utilizing the available spectrum. This is 

measured by the ratio of the number of successfully allocated channels to the total number of channels. For 

Interference it is measured by the level of signal interference experienced by the users. 

Let rt be the reward at time step t: 

rt=α⋅SE−β⋅IM 

Where: 

• αand β are scaling factors that balance the importance of spectrum efficiency and interference minimization. 
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• SE (Spectrum Efficiency) is defined as the ratio of the number of successfully allocated channels to the total 

number of channels. 

• IM (Interference Minimization) is defined as a measure of the interference levels (e.g., the sum of interference 

experienced by all users). 

 

3. OBJECTIVES:    

The main objectives of this paper are: 

1. To implement and evaluate the performance of Q-learning, Deep Q-learning (DQL), and Policy Gradient 

Methods in dynamic spectrum allocation. 

2. To compare the efficiency and effectiveness of these RL techniques in terms of spectrum efficiency and 

interference minimization. 

3. To evaluate the feasibility and effectiveness of deploying these algorithms in practical wireless 

communication scenarios. 

 

4. RESEARCH METHOD: 

 

4.1 Environment Design 

To implement these algorithms a simulated wireless communication environment with multiple users and 

frequency channels is used. Each state includes current channel assignments and signal-to-noise ratios. The action 

space represents possible allocation decisions. RL agents interact with this environment and receive rewards based 

on spectrum efficiency and interference reduction.The reward function is designed to evaluate efficient allocation 

of spectrum to users and evaluate the interference in it.[5] 

1. Q-Learning: A Q-table is initialized, and actions are chosen using an epsilon-greedy strategy. Q-values are 

updated using the Bellman equation. 

2. DQL: A neural network approximates Q-values, trained using mini-batches from a replay buffer. A separate 

target network improves training stability. 

3. PPO: A policy network generates actions. PPO uses a clipped objective function to ensure that policy 

updates are gradual and stable. 

4. Random Allocation: As a baseline, channels are assigned randomly to measure the comparative advantage 

of learning-based methods. 

  

5. RESULTS: 

Simulations was conducted by comparing Q-learning, DQL, PPO (a policy gradient method), and random allocation 

based on performance metrics: interference, spectrum efficiency, and overall reward. 

• Interference: As the number of users and channels increased, PPO consistently achieved the lowest 

interference. DQL and deep learning showed moderate interference, while random allocation resulted in the 

highest interference. 

• Spectrum Efficiency: PPO led to the highest efficiency across all scenarios, followed by deep learning and 

DQL. Random allocation lagged significantly, highlighting the importance of intelligent decision-making. 

• Rewards: A custom reward function combining efficiency and interference was used. PPO earned the highest 

reward scores, even under high user/channel loads, confirming its adaptability and scalability. 

5.1 Performance Metrics 

We evaluate spectrum efficiency, interference levels, and overall network throughput for Q-learning, Deep QLearning, 

Policy Gradient Methods, and Random Allocation The spectrum efficiency and interference levels were analysed using 

Python in Google Colab for varying scenarios involving 10, 100, and 1000 users and channels. 

Interference levels 

Number of Users Number of Channels PPO Deep Learning DQL Random Allocation 

10 10 0.15 0.20 0.25 0.55 
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Number of Users Number of Channels PPO Deep Learning DQL Random Allocation 

10 100 0.18 0.22 0.26 0.60 

10 1000 0.20 0.24 0.28 0.62 

100 10 0.30 0.35 0.40 0.65 

100 100 0.25 0.30 0.32 0.68 

100 1000 0.27 0.32 0.34 0.70 

1000 10 0.40 0.45 0.50 0.75 

1000 100 0.35 0.40 0.42 0.72 

1000 1000 0.32 0.38 0.40 0.73 

The above table shows interference level ;which depends on disruption or degradation of signal quality that occurs when 

multiple wireless signals overlap or collide, leading to a loss of data integrity, increased error rates, and reduced 

communication efficiency. This is a critical issue because it can significantly impact the performance and reliability of 

wireless networks. When we compare with various number of channels and users we can conclude that PPO achieve 

less interference when number of channels and users are high. 

Spectrum allocation 
The spectrum allocation is important factor in wireless communication field like allocation of area for users. The 

Spectrum allocation involves distributing available frequency bands among various users or devices to ensure efficient 

communication with minimal interference. Traditional methods, such as fixed allocation, fail to adapt to varying network 

conditions, leading to inefficient use of spectrum resources. Dynamic spectrum allocation, facilitated by Machine 

Learning techniques, can adaptively allocate spectrum based on current network conditions and user requirements. This 

table shows how various algorithms can be used for allocation of spectrum and its interference level. 

Numbe

r of 

Users 

Number 

of 

Channel

s 

PPO 

Efficienc

y (%) 

PPO 

Interferenc

e 

Deep 

Learning 

Efficienc

y (%) 

Deep 

Learning 

Interferenc

e 

DQL 

Efficienc

y (%) 

DQL 

Interferenc

e 

Random 

Allocatio

n 

Efficienc

y (%) 

Random 

Allocation 

Interferenc

e 

10 10 85 0.15 80 0.2 75 0.25 45 0.55 

10 100 82 0.18 78 0.22 74 0.26 40 0.60 

10 1000 80 0.20 76 0.24 72 0.28 38 0.62 

100 10 70 0.30 65 0.35 60 0.40 35 0.65 

100 100 75 0.25 70 0.30 68 0.32 32 0.68 

100 1000 73 0.27 68 0.32 66 0.34 30 0.70 

1000 10 60 0.40 55 0.45 50 0.50 25 0.75 

1000 100 65 0.35 60 0.40 58 0.42 28 0.72 

1000 1000 68 0.32 62 0.38 60 0.40 27 0.73 

Graphical Representation of spectrum allocation and interference is as follows 



INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD          
ISSN(O): 2455-0620                                                      [ Impact Factor: 9.47 ]          
Monthly, Peer-Reviewed, Refereed, Indexed Journal with  IC Value : 86.87         
Volume - 11,  Issue - 09,  September -  2025              
 

 

Available online on – WWW.IJIRMF.COM Page 238 

 

From the above obtained results ,PPO consistently achieved the highest spectrum efficiency and the lowest interference, 

demonstrating its robustness and adaptability. Deep Learning also performed well but with slightly higher interference 

compared to PPO. Deep Q-Learning (DQL) performed well but was very less when compared with PPO and Deep 

Learning in very large scenarios like increasing channels. Random Allocation showed the worst performance, 

underscoring the necessity of intelligent spectrum management strategies. 

Rewards 

In reinforcement learning (RL) for spectrum allocation in wireless communication, designing an appropriate reward 

function is crucial for guiding the learning process of the agent. The reward function should reflect the goals of 

enhancing spectrum efficiency and minimizing interference. Reward Function here is dependent on spectrum 

efficiency and inference. The spectrum efficiency should be maximum and we should minimize interference 

levels. 

The below table shows simulation results of rewards invarying scenarios involving 10, 100, and 1000 users and channels. 

Number of 

Users 

Number of 

Channels 

PPO 

Reward 

Deep Learning 

Reward 

DQL 

Reward 

Random Allocation 

Reward 

10 10 84.85 79.80 74.75 44.45 

10 100 81.82 77.78 73.74 39.40 

10 1000 79.80 75.76 71.72 37.38 

100 10 69.70 64.65 59.60 34.35 
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Number of 

Users 

Number of 

Channels 

PPO 

Reward 

Deep Learning 

Reward 

DQL 

Reward 

Random Allocation 

Reward 

100 100 74.75 69.70 67.68 31.32 

100 1000 72.73 67.68 65.66 29.30 

1000 10 59.60 54.55 49.50 24.25 

1000 100 64.65 59.60 57.58 27.28 

1000 1000 67.68 61.62 59.60 26.27 

As mentioned , reward  function should drive the system to maximize spectrum efficiency and minimize 
interference. A positive value of reward indicates successful transmission and allocation  and negative value 
indicates channel interference or poor quality allocation. 

The graphical representation is as follows 

 

By analyzing the results, Proximal Policy Optimization (PPO) specifies high reward values with only a slight 
decline as the number of users increases, indicating strong performance when number of users is high. In 
comparison, deep learning methods show a more noticeable drop in rewards with increasing user count, 
suggesting lower effectiveness in high user-density settings. However, when the number of channels increases, 
the decline in rewards is less indicated, and it also perform good in channel-rich environments. 

In Deep Q-Learning (DQL) increase in number of users shows a significant drop in rewards as the number of users 

increases, highlighting potential scalability issues in user scalablity but show a gradual decline, indicating moderate 

adaptability to increasing channels. 

In Random Allocation, when number of users increases Rewards are consistently the lowest, showing significant 

degradation with increasing users, confirming its inefficiency in user-intensive environments. Similarly, when we 

increase number of channels, rewards are low and decrease further with more channels, reinforcing its inadequacy in 

handling complex scenarios. 
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From the above results we can conclude that PPO performs better than the other algorithms in environments with many 

users and channels. It maintains high rewards and shows strong, stable performance. Deep Learning also gives good 

results but is not as effective as PPO, especially when there are many users. DQL does not perform well in large 

networks, which suggests it may have problems with scaling and adapting. Random Allocation gives the worst results 

and is not suitable for efficient spectrum use. 

In real-world applications, PPO is the best choice for networks with high user and channel counts because of its strong 

and reliable performance. Deep Learning is a good option for networks with a moderate number of users and channels. 

DQL may need more improvements or a combination with other methods to work better in larger systems. Random 

Allocation should be avoided due to its low efficiency and high interference. 

These results and interpretations can guide the selection of appropriate machine learning algorithms for spectrum 

allocation in wireless communication networks, aiming to enhance spectrum efficiency and minimize interference. 

6. DISCUSSION  

Q-learning works moderately in small-scale environments but struggles when the number of users and channels 

increases, because it cannot manage large state-action spaces efficiently. Deep Q-Learning (DQL) performs better than 

Q-learning, especially in larger networks, as it uses neural networks to estimate Q-values. This leads to better spectrum 

efficiency and less interference. PPO offers the simplicity of Q-learning and the complexity of DQL. It performs well 

in large-sized environments, but may need more computing power in very large networks. Random Allocation gives the 

worst performance and mainly acts as a comparison baseline, showing why smart, learning-based methods are needed 

for effective spectrum management. 

7. CONCLUSION: 

The study demonstrates that reinforcement learning can significantly enhance spectrum allocation in wireless 

networks. PPO outperforms traditional and other ML-based methods across multiple scenarios. While Q-learning and 

DQL offer benefits, PPO provides superior efficiency, adaptability, and interference control, making it ideal for real-

world applications. The findings suggest that machine learning-based dynamic spectrum allocation is essential for the 

future of scalable and efficient wireless communication 
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