Exploring the Role of Different Types of Catalysts to Enhancing Biodiesel Production from Waste Cooking Oil – A Review
Author(s): 1. Mehul Prajapati, 2. Suganthi Sivaperumal
Authors Affiliations:
1. Research Scholar, Shree Swaminarayan Science College, Swaminarayan University, Kalol ; 2. Assistant Professor, Department of Chemistry, Shree Swaminarayan Science College, Swaminarayan University Kalol.
DOIs:10.2015/IJIRMF/202505003     |     Paper ID: IJIRMF202505003Biodiesel from waste cooking oil (WCO) is an eco-friendly and cost-effective alternative to fossil fuels. This review focuses on catalytic reactions in biodiesel production, especially transesterification using various homogeneous and heterogeneous catalysts. The growing demand for sustainable energy, particularly in Asia, has increased interest in biodiesel. Transesterification converting triglycerides into fatty acid alkyl esters (biodiesel) using acid or base catalysts is the most common method. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) are widely used but generate waste and require specific feedstock. Heterogeneous catalysts are preferred for their reusability and ability to process feedstock with high free fatty acid (FFA) content. Waste cooking oil is highlighted as a low-cost, sustainable feedstock that supports India's biodiesel blending goals. Despite its benefits, biodiesel production still faces challenges like catalyst selection, feedstock variability, and costs. This paper reviews recent catalytic advances and explores future directions for improving efficiency and sustainability.
Mehul Prajapati, Suganthi Sivaperumal(2025); Exploring the Role of Different Types of Catalysts to Enhancing Biodiesel Production from Waste Cooking Oil – A Review, International Journal for Innovative Research in Multidisciplinary Field, ISSN(O): 2455-0620, Vol-11, Issue-5, Pp.12-19. Available on – https://www.ijirmf.com/
- Ma, F., and Hanna, M. A. (1999): Biodiesel production: a review. Bioresource Technology, 70(1), 1–15
- Eisentraut, A. (2013): The biofuel and bioenergy roadmaps of the international energy agency. Bioenergy and Water, 3(1), 8-18.
- Krawczyk, T. (1996): Biodiesel-alternative fuel makes inroads but hurdle remain. inform, 7(1), 800-815.
- Khaled, A., Ahmed, E., Hossam, S., Tarek, S., Raafat, Z., & Mahmoud, M. M. (2024): Making A Small Batch of Biodiesel From waste cook Oil. Applied research in science and humanities, 1(1), 275-282.
- Esfandabadi, Z. S., Ranjbari, M., & Scagnelli, S. D. (2022): The imbalance of food and biofuel markets amid Ukraine-Russia crisis: A systems thinking perspective. Biofuel Res,9(1),1640-1647.
- Almarashi, J. Q., El-Zohary, S. E., Ellabban, M. A., & Abomohra, A. E. F. (2020): Enhancement of lipid production and energy recovery from the green microalga Chlorella vulgaris by inoculum pretreatment with low-dose cold atmospheric pressure plasma (CAPP). Energy Conversion and Management, 204(1), 1-12.
- Bhatia, S. K., Gurav, R., Choi, T. R., Jung, H. R., Yang, S. Y., Song, H. S., … & Yang, Y. H. (2019): Effect of synthetic and food waste-derived volatile fatty acids on lipid accumulation in Rhodococcus sp. YHY01 and the properties of produced biodiesel. Energy conversion and management, 192(1), 385-395.
- Gurav, R., Bhatia, S. K., Moon, Y. M., Choi, T. R., Jung, H. R., Yang, S. Y., … & Yang, Y. H. (2019): One-pot exploitation of chitin biomass for simultaneous production of electricity, n-acetylglucosamine and polyhydroxyalkanoates in microbial fuel cell using novel marine bacterium Arenibacter palladensis YHY2. Journal of Cleaner Production, 209(1), 324-332.
- Gupta, V., & Singh, K. P. (2023): The impact of heterogeneous catalyst on biodiesel production; a review. Materials Today: Proceedings, 78(1), 364-371.
- Loizides, M. I., Loizidou, X. I., Orthodoxou, D. L., & Petsa, D. (2019): Circular bioeconomy in action: collection and recycling of domestic used cooking oil through a social, reverse logistics system,Recycling, 4(2), 1-10.
- Fukuda, H., Kondo, A., & Noda, H. (2001): Biodiesel fuel production by transesterification of oils. Journal of bioscience and bioengineering, 92(5), 405-416.
- Cordero-Ravelo, V., & Schallenberg-Rodriguez, J. (2018): Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment. Journal of environmental management, 228(1), 117-129.
- Gupta, H., Kumar, A., & Wasan, P. (2021): Industry 4.0, cleaner production and circular economy: An integrative framework for evaluating ethical and sustainable business performance of manufacturing organizations. Journal of Cleaner Production, 295(1), 1-18.
- Phan, A. N., & Phan, T. M. (2008): Biodiesel production from waste cooking oils. Fuel, 87(17-18), 3490-3496.
- Mahlia, T. M. I., Syazmi, Z. A. H. S., Mofijur, M., Abas, A. P., Bilad, M. R., Ong, H. C., & Silitonga, A. S. (2020): Patent landscape review on biodiesel production: Technology updates. Renewable and Sustainable Energy Reviews, 118(1), 1-9.
- Knothe, G., and Steidley, K. R. (2018): The effect of metals and metal oxides on biodiesel oxidative stability from promotion to inhibition. Fuel Processing Technology, 177(1), 75-80.
- Van Gerpen, J. (2005): Biodiesel processing and production. Fuel processing technology, 86(10), 1097-1107.
- Pasupulety, N., Gunda, K., Liu, Y., Rempel, G. L., & Ng, F. T. (2013): Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts. Applied Catalysis A: General, 452(1), 189-202.
- Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H., & Mekhilef, S. (2012): A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and sustainable energy reviews, 16(4), 2070-2093.
- Muniyappa, P. R., Brammer, S. C., & Noureddini, H. (1996): Improved conversion of plant oils and animal fats into biodiesel and co-product. Bioresource technology, 56(1), 19-24.
- Dorado, M. P., Ballesteros, E., López, F. J., & Mittelbach, M. (2004): Optimization of alkali-catalyzed transesterification of Brassica C arinata oil for biodiesel production. Energy & fuels, 18(1), 77-83.
- Suleman, N., & Paputungan, M. (2019): Esterifikasi dan transesterifikasi stearin sawit untuk pembuatan biodiesel. Jurnal Teknik, 17(1), 66-77.
- Isahak, W., Ismail, M., Jahim, J., Salimon, J., & Yarmo, M. (2012): Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil. Chemical Papers, 66(3), 178-187.
- Chouhan, A. S., & Sarma, A. K. (2011): Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and sustainable energy reviews, 15(9), 4378-4399.
- Gaur, A., Mishra, S., Chowdhury, S., Baredar, P., & Verma, P. (2021): A review on factor affecting biodiesel production from waste cooking oil: An Indian perspective. Materials Today: Proceedings, 46(1), 5594-5600.
- De Boer, K., Moheimani, N. R., Borowitzka, M. A., & Bahri, P. A. (2012): Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. Journal of Applied Phycology, 24(1), 1681-1698.
- Chouhan, A. S., and Sarma, A. K. (2011): Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and sustainable energy reviews, 15(9), 4378-4399.
- Balat, M. (2009): Biodiesel fuel from triglycerides via transesterification—a review. Energy Sources, Part A, 31(14), 1300-1314.
- Ma, F., and Hanna, M. A. (1999): Biodiesel production: a review. Bioresource technology, 70(1), 1-15.
- Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005): Biodiesel production from high FFA rubber seed oil. Fuel, 84(4), 335-340.
- Tiwari, A. K., Kumar, A., & Raheman, H. (2007): Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass and bioenergy, 31(8), 569-575.
- Sahoo, P. K., Das, L. M., Babu, M. K. G., & Naik, S. N. (2007): Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel, 86(3), 448-454.
- Freedman, B. E. H. P., Pryde, E. H., & Mounts, T. L. (1984): Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society, 61(1), 1638-1643.
- Al-Widyan, M. I., and Al-Shyoukh, A. O. (2002): Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresource technology, 85(3), 253-256.
- Srivastava, A., and Prasad, R. (2000): Triglycerides-based diesel fuels. Renewable and sustainable energy reviews, 4(2), 111-133.
- Daniyan, I. A., Adeodu, A. O., Dada, O. M., & Oladunjoye, O. M. (2015): Effects of catalyst variation on biodiesel yield, J. Advancement in engineering and technology, 3(1), 1-3.
- Endalew, A. K., Kiros, Y., & Zanzi, R. (2011): Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass and bioenergy, 35(9), 3787-3809.
- Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H., & Mekhilef, S. (2012): A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and sustainable energy reviews, 16(4), 2070-2093.
- Sani, Y. M., Daud, W. M. A. W., & Aziz, A. A. (2014): Activity of solid acid catalysts for biodiesel production: a critical review. Applied Catalysis A: General, 470(1), 140-161.
- Fadhil, A. B., and Ali, L. H. (2013): Alkaline-catalyzed transesterification of Silurus triostegus Heckel fish oil: Optimization of transesterification parameters. Renewable Energy, 60(1), 481-488.
- Borges, M. E., and Díaz, L. (2013): Catalytic packed-bed reactor configuration for biodiesel production using waste oil as feedstock. BioEnergy Research, 6(1), 222-228.
- Navajas, A., Reyero, I., Jiménez-Barrera, E., Romero-Sarria, F., Llorca, J., & Gandía, L. M. (2020): Catalytic performance of bulk and Al2O3-supported molybdenum oxide for the production of biodiesel from oil with high free fatty acids content. Catalysts, 10(2), 1-14.
- Puspa Asri, N., Budikarjono, K., & Roesyadi, A. (2015): Kinetics of Palm Oil Transesterification Using Double Promoted Catalyst CaO/KI/γ-Al2O3. Journal of Engineering & Technological Sciences, 47(4). 353-363.
- Mansir, N., Teo, S. H., Mijan, N. A., & Taufiq-Yap, Y. H. (2021): Efficient reaction for biodiesel manufacturing using bi-functional oxide catalyst. Catalysis Communications, 149(1), 1-8.
- Zhang, L., Wu, H. T., Yang, F. X., & Zhang, J. H. (2015): Evaluation of Soxhlet extractor for one-step biodiesel production from Zanthoxylum bungeanum seeds. Fuel Processing Technology, 131(1), 452-457.
- Zhang, J., Liu, J., & Ma, H. (2012): Esterification of free fatty acids in Zanthoxylum bungeanum seed oil for biodiesel production by stannic chloride. Journal of the American Oil Chemists’ Society, 89(1), 1647-1653.
- Veillette, M., Giroir-Fendler, A., Faucheux, N., & Heitz, M. (2017): Esterification of free fatty acids with methanol to biodiesel using heterogeneous catalysts: from model acid oil to microalgae lipids. Chemical Engineering Journal, 308(1), 101-109.
- Borges, M. E., & Díaz, L. (2012): Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839-2849.
- Liu, X., He, H., Wang, Y., Zhu, S., & Piao, X. (2008): Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2), 216-221.
- Viola, E., Blasi, A., Valerio, V., Guidi, I., Zimbardi, F., Braccio, G., & Giordano, G. (2012): Biodiesel from fried vegetable oils via transesterification by heterogeneous catalysis. Catalysis Today, 179(1), 185-190.
- Aghababaie, M., Beheshti, M., Razmjou, A., & Bordbar, A. K. (2019): Two phase enzymatic membrane reactor for the production of biodiesel from crude Eruca sativa oil. Renewable Energy, 140(1), 104-110.
- Lima, L. G. R., Gonçalves, M. M. M., Couri, S., Melo, V. F., Sant’Ana, G. C. F., & Costa, A. C. A. D. (2019): Lipase production by Aspergillus niger C by submerged fermentation. Brazilian Archives of Biology and Technology, 62(1), 1-14.
- Dhawane, S. H., Karmakar, B., Ghosh, S., & Halder, G. (2018): Parametric optimisation of biodiesel synthesis from waste cooking oil via Taguchi approach. Journal of environmental chemical engineering, 6(4), 3971-3980.
- Kshirsagar, C. M., and Anand, R. (2017): Homogeneous catalysed biodiesel synthesis from Alexandrian Laurel (Calophyllum inophyllum L.) kernel oil using ortho-phosphoric acid as a pretreatment catalyst. International Journal of Green Energy, 14(9), 754-764.
- Karnnasuta, S., Punsuvon, V., & Nokkaew, R. (2015): Biodiesel production from waste coconut oil in coconut milk manufacturing. Walailak Journal of Science and Technology (WJST), 12(3), 291-298.
- Miao, X., Li, R., and Yao, H. (2009): Effective acid-catalyzed transesterification for biodiesel production. Energy Conversion and Management, 50(10), 2680-2684.
- Hsiao, M. C., Kuo, J. Y., Hsieh, P. H., & Hou, S. S. (2018): Improving biodiesel conversions from blends of high-and low-acid-value waste cooking oils using sodium methoxide as a catalyst based on a high speed homogenizer. Energies, 11(9), 1-11.
- Mohadesi, M., Aghel, B., Maleki, M., & Ansari, A. (2019): Production of biodiesel from waste cooking oil using a homogeneous catalyst: Study of semi-industrial pilot of microreactor. Renewable Energy, 136(1), 677-682.
- Ouanji, F., Kacimi, M., Ziyad, M., Puleo, F., & Liotta, L. F. (2017): Production of biodiesel at small-scale (10 L) for local power generation. international journal of hydrogen energy, 42(13), 8914-8921.
- Dawodu, F. A., Ayodele, O. O., & Bolanle-Ojo, T. (2014): Biodiesel production from Sesamum indicum L. seed oil: An optimization study. Egyptian Journal of Petroleum, 23(2), 191-199.
- Muthu, H., SathyaSelvabala, V., Varathachary, T. K., Kirupha Selvaraj, D., Nandagopal, J., & Subramanian, S. (2010): Synthesis of biodiesel from Neem oil using sulfated zirconia via tranesterification. Brazilian Journal of Chemical Engineering, 27, 601-608.
- Shu, Q., Gao, J., Nawaz, Z., Liao, Y., Wang, D., & Wang, J. (2010): Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Applied Energy, 87(8), 2589-2596.
- Mohamed, R. M., Kadry, G. A., Abdel-Samad, H. A., & Awad, M. E. (2020): High operative heterogeneous catalyst in biodiesel production from waste cooking oil. Egyptian Journal of Petroleum, 29(1), 59-65.
- Indrayanah, S., Rosyidah, A., Setyawati, H., & Murwani, I. K. (2018): Performance of magnesium hydroxide fluorides as heterogeneous acid catalyst for biodiesel production. Rasayan Journal of Chemistry, 11(1), 312-320.
- Saikia, K., Ngaosuwan, K., Assabumrungrat, S., Singh, B., Okoye, P. U., Rashid, U., & Rokhum, S. L. (2023): Sulphonated cellulose-based carbon as a green heterogeneous catalyst for biodiesel production: process optimization and kinetic studies. Biomass and Bioenergy, 173(1), 1-12.
- Aigbodion, V. S. (2023): Modified of CaO-nanoparticle synthesized from waste oyster shells with tin tailings as a renewable catalyst for biodiesel production from waste cooking oil as a feedstock. Chemistry Africa, 6(2), 1025-1035.
- Ashok, A., Kennedy, L. J., Vijaya, J. J., & Aruldoss, U. (2018): Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method. Clean Technologies and Environmental Policy, 20(6), 1219-1231.
- Lee, H., Liao, J. D., Yang, J. W., Hsu, W. D., Liu, B. H., Chen, T. C., … & Gedanken, A. (2018): Continuous waste cooking oil transesterification with microwave heating and strontium oxide catalyst. Chemical Engineering & Technology, 41(1), 192-198.
- Ali, M. A. M., Gimbun, J., Lau, K. L., Cheng, C. K., Vo, D. V. N., Lam, S. S., & Yunus, R. M. (2020): Biodiesel synthesized from waste cooking oil in a continuous microwave assisted reactor reduced PM and NOx emissions. Environmental research, 185(1), 1-10.
- Bergamasco, J., de Araujo, M. V., de Vasconcellos, A., Luizon Filho, R. A., Hatanaka, R. R., Giotto, M. V., … & Nery, J. G. (2013): Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres. Biomass and bioenergy, 59(1), 218-233.
- Chen, H. C., Ju, H. Y., Wu, T. T., Liu, Y. C., Lee, C. C., Chang, C., … & Shieh, C. J. (2011): Continuous production of lipase‐catalyzed biodiesel in a packed‐bed reactor: Optimization and enzyme reuse study. Journal of Biomedicine and Biotechnology, 2011(1), 1-6.
- Shao, P., Meng, X., He, J., & Sun, P. (2008): Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock. Food and Bioproducts Processing, 86(4), 283-289.
- Gong, H., Gao, L., Nie, K., Wang, M., & Tan, T. (2020): A new reactor for enzymatic synthesis of biodiesel from waste cooking oil: A static-mixed reactor pilot study. Renewable Energy, 154(1), 270-277.