21, July 2025

IOT-driven precision agriculture: A comprehensive review of machine learning techniques for rice plant disease diagnosis and nutrient deficiency detection using IOT sensor data

Author(s): Subrat Chetia

Authors Affiliations:

Assistant Professor, Department of Computer Science, Pandit Deendayal Upadhyaya Adarsha  Mahavidyalaya,  Dalgaon 784116, India

DOIs:10.2015/IJIRMF/202507025     |     Paper ID: IJIRMF202507025


Abstract
Keywords
Cite this Article/Paper as
References

In many nations, rice is the primary agricultural product. On the other hand, illnesses on rice plants may cause the crop to produce less rice overall and of lower quality. Consequently, early identification of plant diseases will aid in shielding rice from serious infection and minimizing crop loss. The recently utilizing in agricultural monitoring in conjunction with GPS and a camera. It is a substitute tool for gathering data in a big area fast and independently. This review describes a system based on Internet of Things (IoT) that uses real-time information, including acquisition utilizing image processing techniques to perform rice disease diagnosis and classification, in order to improve rice yield. The IoT sensors employed in this continuously monitor crucial environmental parameters, including soil moisture, temperature, and nutrient levels, providing real-time data. The system can map the location of diseased rice plants on rice fields and present the analytical technique by using a sensor to detect the position in real-time. The aim of this system is to function as a prototype for an early and real-time disease detection system based on the Internet of Things.

Rice Plant disease, Machine Learning(ML), Deep Learning(DL), Internet of Things(IoT), CNN, GPS, Sensor

Subrat Chetia(2025); IOT-driven precision agriculture: A comprehensive review of machine learning techniques for rice plant disease diagnosis and nutrient deficiency detection using IOT sensor data, International Journal for Innovative Research in Multidisciplinary Field, ISSN(O): 2455-0620, Vol-11, Issue-7, Pp.170-180.          Available on –   https://www.ijirmf.com/

  1. Patil, R. R., & Kumar, S. (2020). A Bibliometric Survey on the Diagnosis of Plant Leaf Diseases using Artifificial Intelligence. Library Philosophy and Practice, 1-26.
  2. Pantazi, X. E., Moshou, D., &Tamouridou, A. A. (2019). Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers. Computers and electronics in agriculture156, 96-104.
  3. Zarbafi, S. S., & Ham, J. H. (2019). An overview of rice QTLs associated with disease resistance to three major rice diseases: blast, sheath blight, and bacterial panicle blight. Agronomy9(4), 177
  4. Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers7(1), 3-10.
  5. Golhani, K., Balasundram, S. K., Vadamalai, G., & Pradhan, B. (2018). A review of neural networks in plant disease detection using hyperspectral data. Information Processing in Agriculture5(3), 354-371.
  6. Shivappa, R., Navadagi, D. B., Baite, M. S., Yadav, M. K., Rathinam, P. S., Umapathy, K., … & Rath, P. C. (2021). Emerging minor diseases of rice in india: losses and management strategies. Integrative Advances in Rice Research.
  7. Raghu, S., Baite, M. S., Patil, N. B., Sanghamitra, P., Yadav, M. K., Prabhukarthikeyan, S. R., … & Rath, P. C. (2020). Grain discoloration in popular rice varieties (Oryza sativa L) in eastern India, associated mycoflora, quality losses and management using selected biocontrol agents. Journal of Stored Products Research88, 101682.
  8. Karthick, D. Vijayalakshmi, Malaya Kumar Nath, M. Mathumathi (2022, Dec). Machine Learning Approaches for Automatic Disease Detection from Paddy Crops.International Journal of Engineering Trends and Technology
  9. Katsantonis, D., Kadoglidou, K., Dramalis, C., &Puigdollers, P. (2017). Rice blast forecasting models and their practical value: a review. PhytopathologiaMediterranea, 187-216.
  10. Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S., Navajas, A. D., & Ortiz-Barredo, A. (2017). Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Computers and electronics in agriculture138, 200-209.
  11. Dhaka, V. S., Kundu, N., Rani, G., Zumpano, E., & Vocaturo, E. (2023). Role of Internet of Things and Deep Learning Techniques in Plant Disease Detection and Classification: A Focused Review. Sensors23(18), 7877.
  12. Ahmad, A., Saraswat, D., & El Gamal, A. (2023). A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agricultural Technology3, 100083.
  13. Patil, R. R., & Kumar, S. (2022). Rice-fusion: A multimodality data fusion framework for rice disease diagnosis. IEEE Access10, 5207-5222.
  14. Ouhami, M., Hafiane, A., Es-Saady, Y., El Hajji, M., & Canals, R. (2021). Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research. Remote Sensing13(13), 2486.
  15. Zhang, N., Yang, G., Pan, Y., Yang, X., Chen, L., & Zhao, C. (2020). A review of advanced technologies and development for hyperspectral-based plant disease detection in the past three decades. Remote Sensing12(19), 3188.
  16. Anamisa, D. R., Yusuf, M., Agustiono, W., &Svarief, M. (2019, September). Technologies. Methods, and Approaches on Detection System of Plant Pests and Diseases. In 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)(pp. 163-170). IEEE.
  17. Rau, A. J., Sankar, J., Mohan, A. R., Krishna, D. D., & Mathew, J. (2017, July). IoT based smart irrigation system and nutrient detection with disease analysis. In 2017 IEEE Region 10 Symposium (TENSYMP)(pp. 1-4). IEEE.
  18. Mahlein, A. K. (2016). Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant disease100(2), 241-251.
  19. Huang, K. Y. (2007). Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in agriculture57(1), 3-11.
  20. Kai, S., Zhikun, L., Hang, S., &Chunhong, G. (2011, January). A research of maize disease image recognition of corn based on BP networks. In 2011 third international conference on measuring technology and mechatronics automation(Vol. 1, pp. 246-249). IEEE.
  21. Sannakki, S. S., Rajpurohit, V. S., Nargund, V. B., & Kulkarni, P. (2013, July). Diagnosis and classification of grape leaf diseases using neural networks. In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)(pp. 1-5). IEEE.
  22. Arivazhagan, S., Shebiah, R. N., Ananthi, S., &Varthini, S. V. (2013). Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agricultural Engineering International: CIGR Journal15(1), 211-217.
  23. Xu, G., Zhang, F., Shah, S. G., Ye, Y., & Mao, H. (2011). Use of leaf color images to identify nitrogen and potassium deficient tomatoes. Pattern Recognition Letters32(11), 1584-1590.
  24. Shrivastava, S., Singh, S. K., & Hooda, D. S. (2014). Statistical texture and normalized discrete cosine transform-based automatic soya plant foliar infection cataloguing. British Journal of Mathematics & Computer Science4(20), 2901.
  25. Asfarian, A., Herdiyeni, Y., Rauf, A., &Mutaqin, K. H. (2013, November). Paddy diseases identification with texture analysis using fractal descriptors based on fourier spectrum. In 2013 International Conference on Computer, Control, Informatics and Its Applications (IC3INA)(pp. 77-81). IEEE.
  26. Tian, Y., & Zhang, L. (2012). Study on the methods of detecting cucumber downy mildew using hyperspectral imaging technology. Physics Procedia33, 743-750.
  27. Phadikar, S., & Sil, J. (2008, December). Rice disease identification using pattern recognition techniques. In 2008 11th International Conference on Computer and Information Technology(pp. 420-423). IEEE.
  28. Kurniawati, N. N., Abdullah, S. N. H. S., Abdullah, S., & Abdullah, S. (2009, December). Investigation on image processing techniques for diagnosing paddy diseases. In 2009 international conference of soft computing and pattern recognition(pp. 272-277). IEEE.
  29. Verma, T., Satpathy, S. K., Nagwanshi, K. K., & Sharma, L. K. (2011). Loss Estimation by Fuzzy C-Means Clustering Algorithm in Rice Farming Caused by Leaf Blast Diseases. International Journal of Computer Information Systems, 21-27.
  30. Phadikar, S., Sil, J., & Das, A. K. (2013). Rice diseases classification using feature selection and rule generation techniques. Computers and electronics in agriculture90, 76-85.
  31. Matin, M. M. H., Khatun, A., Moazzam, M. G., & Uddin, M. S. (2020). An efficient disease detection technique of rice leaf using AlexNet. Journal of Computer and Communications8(12), 49-57.
  32. Rathore, N. P. S., & Prasad, L. (2020). Automatic rice plant disease recognition and identification using convolutional neural network. Journal of critical reviews7(15), 6076-6086.
  33. Sun, Y., Gao, J., Wang, K., Shen, Z., & Chen, L. (2018). Utilization of machine vision to monitor the dynamic responses of rice leaf morphology and colour to nitrogen, phosphorus, and potassium deficiencies. Journal of Spectroscopy2018.
  34. Chen, L., Lin, L., Cai, G., Sun, Y., Huang, T., Wang, K., & Deng, J. (2014). Identification of nitrogen, phosphorus, and potassium deficiencies in rice based on static scanning technology and hierarchical identification method. PloS one9(11), e113200.
  35. Sayeed, M. A., Shashikala, G., Pandey, S., Jain, R., & Kumar, S. N. (2016). Estimation of nitrogen in rice plant using image processing and artificial neural networks. Imperial Jurnal of Interdisciplinary research (IJIR)2.
  36. Rorie, R. L., Purcell, L. C., Karcher, D. E., & King, C. A. (2011). The assessment of leaf nitrogen in corn from digital images. Crop Science51(5), 2174-2180.
  37. Borhan, M. S., Panigrahi, S., Satter, M. A., & Gu, H. (2017). Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information processing in agriculture4(4), 275-282.
  38. Barbedo, J. G. A. (2016). A review on the main challenges in automatic plant disease identification based on visible range images. Biosystems engineering144, 52-60.

Download Full Paper

Download PDF No. of Downloads:21 | No. of Views: 63