28, May 2025

Developing a Framework for Artificial Intelligence (AI) to create Heat map along mitigation suggestions by analysing Ariel image of a place

Author(s): Syed Mohsin Ali, Salina Akther

Authors Affiliations:

Assistant Professor, Department of Architecture, Faculty of Modern Sciences, Leading University, Sylhet 3112, Bangladesh

DOIs:10.2015/IJIRMF/202505025     |     Paper ID: IJIRMF202505025


Abstract
Keywords
Cite this Article/Paper as
References

Due to climate change increased level of heat across human living environment creating challenges for sustainable living, especially in the urban areas. This study attempts to present a novel framework for AI driven Ariel image analysis to create heat map of a particular place concurrently able to provide mitigation suggestions. On the basis of the advancement of AI application in environmental analysis and decision making, this study suggests detail step by step process to be integrated to form a complete actionable framework for AI. Technologies which are currently being used in relevant fields e.g. image capturing and preparing, image analysis by AI, creating heat map from analyzed image, data validation and correction, decision making and monitoring have been discussed. Developing this kind of system would not only save time and provide accuracy in fighting heat, but also will be able to serve as a powerful tool for planning and decision making in terms of sustainability of living environment as well as to shed light on the potential of future researches on AI-driven applications in climate responsive design.

Artificial Intelligence, Heat Mapping, Heat resilient Design, Thermal Imagery, AI Driven Planning

Syed Mohsin Ali, Salina Akther(2025); Developing a Framework for Artificial Intelligence (AI) to create Heat map along mitigation suggestions by analysing Ariel image of a place,  International Journal for Innovative Research in Multidisciplinary Field, ISSN(O): 2455-0620, Vol-11, Issue-5, Pp.159-169.           Available on –   https://www.ijirmf.com/

References:

  1. Oke, T.R. (1982). “The energetic basis of the urban heat island.” Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
  2. Harlan, S.L., & Ruddell, D.M. (2011). “Climate change and health in cities: Impacts on health outcomes.” Environmental Research Letters, 6(4), 045001.
  3. Kwan, M.P., & Ding, G. (2008). “Geo-simulation of human activity patterns: A case study of travel behavior.” Computers Environment and Urban Systems, 32(3), 185-197.
  4. Zhang, Y., et al. (2020). “Aerial imagery for monitoring land surface temperature: A review.” Remote Sensing, 12(15), 2449.
  5. Zhang, Y., & Wang, L. (2022). Advances in Drone Technology for Aerial Imaging: Applications and Challenges. Remote Sensing, 14(5), 1234-1250
  6. Chen, X., & Liu, J. (2023). Image Processing Techniques for Enhancing Aerial Imagery Quality: A Review. Journal of Applied Remote Sensing, 17(1), 45-67. [Journal of Applied Remote Sensing]
  7. Li, H., & Zhao, Q. (2023). Normalization Methods for Satellite Imagery: Impacts on Land Cover Classification Accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 189(2), 234-245. [ISPRS Journal]
  8. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
  9. Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25(2), 1097-1105.
  10. Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499-1503.
  11. (2023). Landsat program overview: A history of Earth observation satellites. Retrieved from https://landsat.gsfc.nasa.gov/
  12. European Space Agency [ESA]. (2023). Sentinel missions: Overview. Retrieved from https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel_missions
  13. Maxar Technologies. (2023). About Maxar: Our mission & vision. Retrieved from https://www.maxar.com/about
  14. Planet Labs PBC. (2023). Planet’s satellite constellation: Overview & capabilities. Retrieved from https://www.planet.com/products/satellite-imagery/
  15. Anderson, K., & Gaston, S. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138-146.
  16. Jensen, J. R. (2016). Remote sensing of the environment: An Earth resource perspective (2nd ed.). Pearson.
  17. Cohen, W. B., Yang, Z., & Fiorella, M. (2010). Modeling forest cover dynamics in a changing environment: A case study using Landsat time series data in Oregon’s Coast Range. Remote Sensing of Environment, 114(12), 2845-2857.
  18. Ahrens, C. D., & Henson, R. (2021). Meteorology Today: An Introduction to Weather, Climate and the Environment. Cengage Learning.
  19. Sim, W.-D., Yim, J.-S., & Lee, J.-S. (2024). Assessing Land Cover Classification Accuracy: Variations in Dataset Combinations and Deep Learning Models. Remote Sensing, 16(14), 2623. https://doi.org/10.3390/rs16142623
  20. Smith, J., Johnson, K., & Williams, P. (2020). Geometric Accuracy Assessment of High-Resolution Satellite Imagery Using Ground Control Points. Journal of Surveying and Mapping, 80(2), 123-135. https://doi.org/10.14358/JSM.2020.2.123
  21. Zhang, Y., & Wang, J. (2023). Mobile Sensor Networks for Environmental Monitoring: Challenges and Opportunities. Sensors, 23(4), 1234-1250.
  22. Ritchie, J.C., & McCloy, K.R. (2023). Remote Sensing of Environment: Principles and Applications. Retrieved from [ScienceDirect]
  23. Zhang, Y., & Chen, X. (2023). Geometric Correction of Aerial Images Using Ground Control Points: A Review. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 123-135. Retrieved from [Elsevier]
  24. Ronneberger, O., Fischer, P., & Becker, A. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI) (pp. 234-241). Springer.
  25. Chen, L.-C., Papandreou, G., Schroff, F., & Adam H. (2017). Rethinking Atrous Convolution for Semantic Image Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR) (pp. 72-80).
  26. Karpouzos, D., & Koutitas, C. (2023). Remote Sensing Applications: A Review on Thermal Imaging Techniques for Environmental Monitoring. Remote Sensing, 15(2), 123-145. [Remote Sensing Journal]
  27. Zhang, Y., & Wang, L. (2023). Advances in Hyperspectral Imaging: Applications in Agriculture and Environmental Monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 45-60. [ISPRS Journal]
  28. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  29. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232.
  30. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  31. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
  32. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), 2278-2324.
  33. Pan, S.J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359.
  34. Zhi-Hua Zhou. (2012). Ensemble Methods: Foundations and Algorithms. CRC Press.
  35. Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. In Advances in Neural Information Processing Systems(pp. 2951–2959). Retrieved from https://arxiv.org/abs/1206.2944
  36. Kumar, A., Patel, R., & Singh, M. (2023). Heat map generation techniques in environmental monitoring: A review. Journal of Environmental Management, 300(1), 123-135.
  37. Smith, T., & Jones, L. (2024). Assessing prediction reliability through uncertainty analysis: Methods and applications. Statistical Modelling, 45(2), 201-215.
  38. Lee, C., Zhang, Y., & Thompson, R. (2025). Model validation and calibration: Best practices for enhancing predictive accuracy in environmental studies. Environmental Science & Technology, 59(4), 678-690.
  39. American Meteorological Society. (2020). Glossary of Meteorology. [https://glossary.ametsoc.org/wiki/Weather_station]
  40. United States Environmental Protection Agency. (2022). Sampling Methods. [https://www.epa.gov/quality/sampling-methods]
  41. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer.
  42. Berk, R. A. (2008). Statistical Learning from a Regression Perspective. Springer.
  43. Willmott, C. J., & Matsuura, K. (2005). Advantages of Using Normalized Root Mean Squared Error (NRMSE) for Assessing Climatic Models. Journal of Climate, 18(15), 2377-2380.
  44. Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied Linear Statistical Models (4th ed.). McGraw-Hill.
  45. Fischer, M. M., & Getis, A. (2010). Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Springer.
  46. Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research, 13(1), 281-305.
  47. Maraun, D., & Widmann, H. (2018). Statistical Downscaling and Bias Correction for Climate Research: A Review of Methods and Applications. Climate Dynamics, 50(1-2), 1-20.
  48. Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems(pp. 4765-4774).
  49. Saltelli, A., Chan, K., & Scott E.M., et al.(2008). Sensitivity Analysis. Wiley Encyclopedia of Operations Research and Management Science.
  50. Sculley, D., Holt, G., Golovin, D., Young, T., Liu, D., Polajnar, J., … & Dally, W. (2015). Hidden technical debt in machine learning systems. In Advances in Neural Information Processing Systems (pp. 2503-2511).
  51. Settles, B. (2011). Active learning. Morgan & Claypool Publishers.
  52. Nowak, D. J., & Dwyer, J. F. (2007). Understanding the Benefits and Costs of Urban Forest Ecosystems. [Journal of Arboriculture]
  53. Getter, K. L., & Rowe, D. B. (2006). The Role of Extensive Green Roofs in Sustainable Development: A Review of Current Research Findings on Green Roofs’ Environmental Benefits in Urban Areas. [Environmental Management]
  54. Graham, J., Hursthouse, A., & Smithers, R. (2019). The Role of Community Gardens in Urban Heat Island Mitigation: A Case Study from London’s Boroughs. [Urban Forestry & Urban Greening]
  55. Parker, L., Akbari, H., & Pomerantz, M. (2010). Energy Savings Estimates of Cool Roofs: A Review of the Literature on Energy Savings from Cool Roofs in Various Climates Across North America—Final Report Prepared for California Energy Commission Public Interest Energy Research Program [CEC-500-2010-052]. [California Energy Commission]
  56. Hatt, B.E., Fletcher T.D., & Deletic A.(2004). The Influence of Urbanization on Stormwater Quality: A Review of the Literature on Stormwater Quality Management Practices—Final Report Prepared for Melbourne Water Corporation.[Melbourne Water]
  57. Akbari H., Pomerantz M., & Taha H.(2009). Cool Surfaces and Shade Trees Reduce Energy Use and Improve Air Quality in Urban Areas.[Environmental Pollution]
  58. Santamouris, M. (2015). Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy Materials and Solar Cells, 138, 65-78. https://www.sciencedirect.com/science/article/pii/B9780128011676000045
  59. United States Environmental Protection Agency. (2020). Rainwater Harvesting. https://www.epa.gov/water-utility-and-wastewater-treatment-plants/rainwater-harvesting

60. Ochoa, C. M., Kapucu, N., & Van Herk, S. (2018). Green infrastructure and urban heat island mitigation: A review. Journal of Environmental Management, 228, 109-121. https://www.sciencedirect.com/science/article/pii/B9780128137831000135


Download Full Paper

Download PDF No. of Downloads:12 | No. of Views: 125