11, August 2025

General Overview of Cryo-Adsorption for Hydrogen Storage

Author(s): Dr.Anthati Sreenivasulu

Authors Affiliations:

Associate Professor, Department of Chemistry, Nagarjuna Government College (A), Nalgonda, Telangana, India.

 

DOIs:10.2015/IJIRMF/202508004     |     Paper ID: IJIRMF202508004


Abstract
Keywords
Cite this Article/Paper as
References

Cryo-adsorption is a way to store hydrogen with cold temperatures and adsorbents (porous materials) such as activated carbon or MOFs, achieving a high hydrogen storage density without storing the hydrogen at extreme pressures. It has promise for fuel cell vehicles and ships, mostly due to emerging materials (e.g. COFs) and system configurations. However, it still has challenges moving forward in terms of thermal management and total cost of ownership. This overview provides a summary of recent literature to show the potential of cryo-adsorption for the hydrogen economy.

Cryo-Adsorption, Hydrogen Storage, Porus materials, Activated Carbon, MOFs, COFs, Fuel cell vehicles, Thermal management, Economic viability, Clean energy

Dr.Anthati Sreenivasulu (2025); General Overview of Cryo-Adsorption for Hydrogen Storage, International Journal for Innovative Research in Multidisciplinary Field, ISSN(O): 2455-0620, Vol-11, Issue-8, Pp. 25-29.         Available on –   https://www.ijirmf.com/

  1. U.S. Department of Energy. (2017). DOE technical targets for onboard hydrogen storage for light-duty vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty vehicles
  2. Ahluwalia, R. K., Hua, T. Q., & Peng, J.-K. (2014). A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods. International Journal of Hydrogen Energy, 39(23), 12051–12062. https://doi.org/10.1016/j.ijhydene.2014.04.200
  3. Chahine, R., Bose, T. K., & St-Arnaud, J.-M. (2009). Automotive hydrogen storage system using cryo-adsorption on activated carbon. International Journal of Hydrogen Energy, 34(14), 5969–5975. https://doi.org/10.1016/j.ijhydene.2009.05.023.
  4. Kasper T. Møller, Torben R. Jensen, Etsuo Akiba, Hai-wen Li, Hydrogen (2017) A sustainable energy carrier, Progress in Natural Science: Materials International, Volume 27, Issue 1, , Pages 34-40, ISSN 1002-0071, https://doi.org/10.1016/j.pnsc.2016.12.014.
  5. Marcelo Carmo, David L. Fritz, Jürgen Mergel, Detlef Stolten,A comprehensive review on PEM water electrolysis (2013) International Journal of Hydrogen Energy, Volume 38, Issue 12, 2013, Pages 4901-4934, https://doi.org/10.1016/j.ijhydene.2013.01.151.
  6. National Research Council and National Academy of Engineering. 2004. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. Washington, DC: The National Academies Press. https://doi.org/10.17226/10922.
  7. 23.H. Afeefy, J. Liebman, S. Stein P.J. Linstrom, W.G. Mallard (Eds.) (2005) Neutral thermochemical data in NIST Standard Reference Database Number 69, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD.
  8. Marcel Otto, Katerina L. Chagoya, Richard G. Blair, Sandra M. Hick, Jayanta S. Kapat (2022) Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation, Journal of Energy Storage, 55 (D)105714, https://doi.org/10.1016/j.est.2022.105714
  9. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705–714. https://doi.org/10.1038/nature01657
  10. El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortés, J. L., Côté, A. P., Taylor, R. E., O’Keeffe, M., & Yaghi, O. M. (2007). Designed synthesis of 3D covalent organic frameworks. Science, 316(5822), 268–272. https://doi.org/10.1126/science.1139915
  11. Hassan, A., et al. (2024). Enhanced hydrogen storage efficiency with sorbents and machine learning: A review. Environmental Chemistry Letters, 22(5), 123–140. https://doi.org/10.1007/s10311-024-01700-5
  12. Kumar, A., et al. (2024). High hydrogen release by cryo-adsorption and compression on porous materials.

International Journal of Hydrogen Energy, 46(35), 17951–17962. https://doi.org/10.1016/j.ijhydene.2021.12.235

13.Wikipedia. (n.d.). Hydrogen storage (2025) https://en.wikipedia.org/wiki/Hydrogen_storage

  1. Liang Tong, Jinsheng Xiao, Pierre Bénard, Richard Chahine (2019) Thermal management of metal hydride hydrogen storage reservoir using phase change materials, International Journal of Hydrogen Energy, 44(38), 21055-21066, https://doi.org/10.1016/j.ijhydene.2019.03.127
  2. Blankenship, L. S., Balahmar, N., & Mokaya, R. (2017). Oxygen-rich microporous carbons for exceptional hydrogen storage. Nature Communications, 8(1), 1545. https://doi.org/10.1038/s41467-017-01633-x
  3. Srinivas, G., Burress, J. W., & Yaghi, O. M. (2010). Porous hydrogen-bonded organic frameworks. Journal of the American Chemical Society, 132(40), 14082–14084. https://doi.org/10.1021/ja106324t
  4. Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., Snurr, R. Q., Nguyen, S. T., Yazaydin, A. Ö., & Hupp, J. T. (2012). Metal–organic framework materials with ultrahigh surface area: Isostructural considerations for enhanced CO₂ and H₂ adsorption. Journal of the American Chemical Society, 134(36), 15016–15021.  https://doi.org/10.1021/ja3065054
  5. Subrahmanyam, K. S., Kumar, P., Maitra, U., & Govindaraj, A. (2011). Graphene supported metal nanoparticles for hydrogen storage. International Journal of Hydrogen Energy, 36(22), 14328–14335. https://doi.org/10.1016/j.ijhydene.2011.08.032
  6. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., & Heben, M. J. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386(6623), 377–379. https://doi.org/10.1038/386377a0
  7. Senkov, O. N., Miracle, D. B., & Firstov, S. A. (2010). Hydrogen storage in high-entropy alloys. International Journal of Hydrogen Energy, 35(1), 177–184. https://doi.org/10.1016/j.ijhydene.2009.10.009
  8. Rochat, S., Polak-Krasna, K., Tian, M., Holyfield, L., Mays, T., Bowen, C., & Burrows, A. (2017). Hydrogen storage in polymer-based processable microporous composites. Journal of Materials Chemistry A, 5(35), 18752–18761. https://doi.org/10.1039/c7ta05232d
  9. Langmi, P. J., McGrady, G. S., & Jensen, C. M. (2003). Hydrogen storage in zeolites. Journal of Physical Chemistry B, 107(6), 1458–1464. https://doi.org/10.1021/jp0267556
  10. Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two dimensional transition metal carbides. ACS Nano, 5(9), 7225–7233. https://doi.org/10.1021/nn202561p

 


Download Full Paper

Download PDF No. of Downloads:6 | No. of Views: 56