7, April 2025

A Review of Biological and Nutritional Significance of Lutein derived from Indian Cultivars of Tagetes patula L

Author(s): Anita Kumari , Taruna Singh , Shinjinee Bhattacharyya, Sandeep Kumar, Raj Kumar Thakur

Authors Affiliations:

1 Department of Chemistry, Miranda House, University of Delhi, Delhi, India

2 Department of Physics, Govt. Degree College Drang at Narla, Sardar Patel University Mandi, Himachal Pradesh, India

3 Department of Chemistry, Vallabh Govt. College Mandi, Sardar Patel University Mandi, Himachal Pradesh, India

DOIs:10.2015/IJIRMF/2025004005     |     Paper ID: IJIRMF202504005


Abstract
Keywords
Cite this Article/Paper as
References

Carotenoids and oils derived from Indian cultivars have gained attention for their biological significance and potential health benefits. Several Indians suffer from nutritional deficiencies, which lead to chronic illnesses with the progression of time. Carotenoids, as antioxidants, play a crucial role in maintaining cellular health and protecting against chronic diseases.  Extensive research underscores its potent antioxidant and anti-inflammatory properties, potentially offering protection against a multitude of chronic diseases. Marigolds, a readily available and sustainable source of lutein, offer a practical solution for food fortification. Dairy products, particularly yogurt, represent a suitable food matrix due to their widespread consumption, taste and color versatility, and ease of ingestion. However, investigation is important to ensure lutein stability throughout food processing and storage, while minimizing any potential alterations to sensory attributes. The prospect of lutein-fortified foods not only holds promise for enhanced public awareness of its health benefits but also paves the way for increased consumption of naturally lutein-rich fruits and vegetables. This literature review explores the biological significance of carotenoids and oils derived from Indian cultivars through a comprehensive analysis of available literature.

Marigold, Lutein, Lutein-fortified food, chronic diseases.

Anita Kumari , Taruna Singh , Shinjinee Bhattacharyya, Sandeep Kumar, Raj Kumar Thakur (2025); A Review of Biological and Nutritional Significance of Lutein derived from Indian Cultivars of Tagetes patula L., International Journal for Innovative Research in Multidisciplinary Field, ISSN(O): 2455-0620, Vol-11, Issue-4, Pp.29-38          Available on –   https://www.ijirmf.com/

  1. Dias, M. G., Olmedilla-Alonso, B., Hornero-Mendez, D., Mercadante, A. Z., Osorio, C., Vargas-Murga, L., & Melendez-Martínez, A. J. (2018). Comprehensive database of carotenoid contents in ibero-american foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. Journal of Agricultural and Food Chemistry, 66(20) 5055–5107
  2. Britton, G. (1995). Structure and properties of carotenoids in relation to function. The FASEB Journal, 9, 1551–
  3. Canene-Adams, K., & Erdman, J. W. (2009). Absorption, transport, distribution in tissues and bioavailability Carotenoids (pp. 115–148)
  4. Liguori, N., Xu, P., van Stokkum, I. H. M., van Oort, B., Lu, Y., Karcher, D., Bock, R., & Croce, R. (2017). Different carotenoid conformations have distinct functions in light harvesting regulation in plants. Nature Communications, 8, 1994.
  5. Yabuzaki, J. (2017). Carotenoids database: Structures, chemical fingerprints and distribution among organisms. Database (Oxford), 2017.
  6. Sourkes(2009). The discovery and early history of carotene. Bulletin for the History of Chemistry, 34(1).
  7. Chew, E. Y., Clemons, T. E., Agron, ´ E., Domalpally, A., Keenan, T. D. L., Vitale, S., Weber, C., Smith, D. C., & Christen, W. (2022). Long-term outcomes of adding lutein/zeaxanthin and ω-3 fatty acids to the areds supplements on age-related macular degeneration progression: Areds2 report 28. JAMA Ophthalmol, 140(7), 692–
  8. Seddon, J. M., Ajani, U. A., Sperduto, R. D., Hiller, R., Blair, N., Burton, T. C., Farber, M. D., Gragoudas, E. S., Haller, J., & Miller, D. T. (1994). Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. JAMA, 272(18), 1413–1420
  9. Lin, Jian-Hao, Duu-Jong Lee, and Jo-Shu Chang. “Lutein production from biomass: Marigold flowers versus microalgae.”Bioresource Technology 184 (2015): 421-428.
  10. Bone, R. A., Landrum, J. T., Friedes, L. M., Gomez, C. M., Kilburn, M. D., Menendez, E., Vidal, I., & Wang, W. (1997). Distribution of lutein and zeaxanthin stereoisomers in the human retina. Experimental Eye Research, 64, 211–
  11. Bone, R. A., Landrum, J. T., & Tarsis, S. L. (1985). Preliminary identification of the human macular pigment. Vision Research, 25, 1531–
  12. Boon, C. S., McClements, D. J., Weiss, J., & Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50, 515–
  13. Rehman, I., Mahabadi, N., Motlagh, M., & Ali, T. (2022). Anatomy, head and neck, eye fovea Statpearls. StatPearls Publishing.
  14. Grudzinski, W., Nierzwicki, L., Welc, R., Reszczynska, E., Luchowski, R., Czub, J., & Gruszecki, W. I. (2017). Localization and orientation of xanthophylls in a lipid bilayer. Scientific Reports,7(1), 9619.
  15. Luchowski, R., Grudzinski, W., Welc, R., Mendes Pinto, M. M., Sek, A., Ostrowski, J., Nierzwicki, L., Chodnicki, P., Wieczor, M., Sowinski, K., Rejdak, R., Juenemann, A. G. M., Teresinski, G., Czub, J., & Gruszecki, W. I. (2021). Light modulated sunscreen mechanism in the retina of the human eye. The Journal of Physical Chemistry B, 125(23), 6090–
  16. Amato, R., Canovai, A., Melecchi, A., Pezzino, S., Corsaro, R., Dal Monte, M., Rusciano, D., Bagnoli, P., & Cammalleri, M. (2021). Dietary supplementation of antioxidant compounds prevents light-induced retinal damage in a rat model. Biomedicines, 9(9).
  17. Akuffo, K. O., Beatty, S., Peto, T., Stack, J., Stringham, J., Kelly, D., Leung, I., Corcoran, L., & Nolan, J. M. (2017). The impact of supplemental antioxidants on visual function in nonadvanced age-related macular degeneration: A head-to-head randomized clinical trial. Investigative Ophthalmology & Visual Science, 58, 5347–
  18. Barnett, S. M., Khan, N. A., Walk, A. M., Raine, L. B., Moulton, C., Cohen, N. J., Kramer, A. F., Hammond, B. R., Jr., Renzi-Hammond, L., & Hillman, C. H. (2018). Macular pigment optical density is positively associated with academic performance among preadolescent children. Nutritional Neuroscience, 21(9), 632–
  19. Johnson, E. J., Vishwanathan, R., Johnson, M. A., Hausman, D. B., Davey, A., Scott, T. M., Green, R. C., Miller, L. S., Gearing, M., & Woodard, J. (2013). Relationship between serum and brain carotenoids,-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia centenarian study. Journal of aging research (1), 951786.
  20. Nolan, J. M., Meagher, K. A., Howard, A. N., Moran, R., Thurnham, D. I., & Beatty, S. (2016). Lutein, zeaxanthin and meso-zeaxanthin content of eggs laid by hens supplemented with free and esterified xanthophylls. Journal of Nutrition Sciences, 5, Article e1.
  21. Kan, B., Guo, D., Yuan, B., Vuong, A. M., Jiang, D., Zhang, M., Cheng, H., Zhao, Q., Li, B., Feng, L., Huang, F., Wang, N., Shen, X., & Yang, S. (2021). Dietary carotenoid intake and osteoporosis: The national health and nutrition examination survey, 2005-2018. Archives of Osteoporosis, 17(1), 2.
  22. Sae-Lao, W., Wunjuntuk, K., Techakriengkrai, T., & Sirichakwal, P. P. (2022). Consumption of lutein and zeaxanthin and its relation to the level of macular pigment optical density in Thai subjects. Journal of Nutrition and Metabolism, 2022.
  23. Olmedilla-Alonso, B., Beltran-de-Miguel, B., Estevez-Santiago, R., & Cuadrado-Vives, C. (2014). Markers of lutein and zeaxanthin status in two age groups of men and women: Dietary intake, serum concentrations, lipid profile and macular pigment optical density. Nutrition Journal, 13(1), 1–
  24. Davis, D. R. (2009). Declining fruit and vegetable nutrient composition: What is the evidence? HortScience, 44, 15–19. Davis, D. R., Epp, M. D., & Riordan, H. D. (2004). Changes in USDA food composition data for 43 garden crops, 1950 to 1999. Journal of the American College of Nutrition, 23(6), 669–
  25. Schiffman, S. S. (1997). Taste and smell losses in normal ageing and disease. JAMA, 278, 1357–
  26. Seçil, Y., Arıcı, S¸ ., Incesu, T. K., Gürgor, ¨ , Beckmann, Y., & Ertekin, C. (2016). Dysphagia in Alzheimer’s disease. Neurophysiologie Clinique/Clinical Neurophysiology, 46(3), 171–178
  27. Ranard, K. M., Jeon, S., Mohn, E. S., Griffiths, J. C., Johnson, E. J., & Erdman, J. W. (2017). Dietary guidance for lutein: Consideration for intake recommendations is scientifically supported. European Journal of Nutrition, 56, 37–
  28. Abdel-Aal, E., Young, J. C., Akhtar, H., & Rabalski, I. (2010). Stability of lutein in wholegrain bakery products naturally high in lutein or fortified with free lutein. Journal of Agricultural and Food Chemistry, 58(18), 10109–
  29. Bouis, H., Birol, E., Boy, E., Gannon, B. M., Haas, J. D., Low, J., Mehta, S., Michaux, K., Mudyahoto, B., & Pfeiffer, W. (2020). Food biofortification: Reaping the benefits of science to overcome hidden hunger. In a Paper presented at the October webinar on the need for agricultural innovation to sustainably feed the world by 2050
  30. Cantrill, R. (2004). Lutein from tagetes erecta. In Chemical and Technical Assessment. Paper prepared for the 63rd JECFA (joint FAO/WHO expert committee on food additives) report–evaluation of certain food additives.
  31. Granado-Lorencio, F., Herrero-Barbudo, C., Olmedilla-Alonso, B., Blanco-Navarro, I., & P´erez-Sacrist´ an, B. (2010). Lutein bioavailability from lutein ester-fortified fermented milk: In vivo and in vitro study. The Journal of Nutritional Biochemistry, 21(2), 133–
  32. Domingos, L., Xavier, A., Mercadante, A., Petenate, A., Jorge, R., & Viotto, W. (2014). Oxidative stability of yogurt with added lutein dye. Journal of Dairy Science, 97(2), 616–
  33. Bettler, J., Zimmer, J. P., Neuringer, M., & DeRusso, P. A. (2010). Serum lutein concentrations in healthy term infants fed human milk or infant formula with lutein. European Journal of Nutrition, 49(1), 45–51
  34. Kornhuber, K., Lesk, C., Schleussner, C. F., J¨ agermeyr, J., Pfleiderer, P., & Horton, R. M. (2023). Risks of synchronized low yields are underestimated in climate and crop model projections. Nature Communications, 14(1), 3528.
  35. Patel, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2022). Microalgal lutein biosynthesis: Recent trends and challenges to enhance the lutein content in microalgal cell factories. Frontiers in Marine Science, 9.
  36. Fernandez-Sevilla, J. M., Acien Fernandez, F. G., & Molina Grima, E. (2010). Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology, 86(1), 27–
  37. Mitra, S., Rauf, A., Tareq, A.M., Jahan, S., Emran, T.B., Shahriar, T.G., Dhama, K., Alhumaydhi, F.A., Aljohani, A.S., Rebezov, M. and Uddin, M.S., 2021. Potential health benefits of carotenoid lutein: An updated review.Food and Chemical Toxicology154, p.112328.
  38. Domingos, L., Xavier, A., Mercadante, A., Petenate, A., Jorge, R., & Viotto, W. (2014). Oxidative stability of yoghurt with added lutein dye. Journal of Dairy Science, 97(2), 616– Dunford, E. K., Miles, D. R., & Popkin, B. (2023).
  39. Sieuwerts, S. (2016). Microbial interactions in the yoghurt consortium: Current status and product implications. SOJ Microb. Infect. Dis, 4, 1–
  40. Read, A., Wright, A., & Abdel-Aal, E.-S. M. (2015). In vitro bioaccessibility and monolayer uptake of lutein from wholegrain baked foods. Food Chemistry, 174, 263–
  41. Metlicar, V., & Albreht, A. (2022). Esterification of lutein from Japanese knotweed waste gives a range of lutein diester products with unique chemical stability. ACS Sustainable Chemistry & Engineering, 10(18), 6072–6081
  42. Ranum, P., Pena-Rosas, ˜ J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105–112
  43. Norkus, E. P., Norkus, K. L., Dharmarajan, T., Schierle, J., & Schalch, W. (2010). Serum lutein response is greater from free lutein than from esterified lutein during 4 weeks of supplementation in healthy adults. Journal of the American College of Nutrition, 29(6), 575–
  44. Yao, Y., Tan, P., & Kim, J. E. (2022). Effects of dietary fats on the bioaccessibility and bioavailability of carotenoids: A systematic review and meta-analysis of in vitro studies and randomized controlled trials. Nutrition Reviews, 80(4), 741–
  45. Zupo, R., Donghia, R., Castellana, F., Bortone, I., De Nucci, S., Sila, A., Tatoli, R., Lampignano, L., Sborgia, G., & Panza, F. (2023). Ultra-processed food consumption and nutritional frailty in older age. GeroScience, 1–
  46. Hadavi, R., Jafari, S. M., & Katouzian, I. (2020). Nanoliposomal encapsulation of saffron bioactive compounds; characterization and optimization. International Journal of Biological Macromolecules, 164, 4046–
  47. Zuidam, N. J., & Nedovic, V. (2010). Encapsulation technologies for active food ingredients and food processing (Vol. 410).
  48. Evans, M., Beck, M., Elliott, J., Etheve, S., Roberts, R., & Schalch, W. (2013). Effects of formulation on the bioavailability of lutein and zeaxanthin: A randomized, double-blind, cross-over, comparative, single-dose study in healthy subjects. European Journal of Nutrition, 52, 1381–1391

 

Loading


Download Full Paper

Download PDF No. of Downloads:14 | No. of Views: 21